【題目】如圖①,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PE=PA,PE交CD于F.
(1)求證: PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖②,把正方形ABCD改為菱形ABCD,其它條件不變,若∠ABC=65°,則∠CPE=________度.
【答案】(1)證明見解析;(2)90°;(3)115°
【解析】試題分析:(1)先證出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;
(2)由△ABP≌△CBP,得∠BAP=∠BCP,進(jìn)而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到結(jié)論;
(3)借助(1)和(2)的證明方法容易證明結(jié)論.
試題解析:(1)在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∵PA=PE,
∴∠PAE=∠PEA,
∴∠CPB=∠AEP,
∵∠AEP+∠PEB=180°,
∴∠PEB+∠PCB=180°,
∴∠ABC+∠EPC=180°,
∵∠ABC=90°,
∴∠EPC=90°;
(3)∠EPC=115°,
理由:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP,
∵PA=PE,
∴∠DAP=∠DCP,
∴∠PAE=∠PEA,
∴∠CPB=∠AEP,
∵∠AEP+∠PEB=180°,
∴∠PEB+∠PCB=180°,
∴∠ABC+∠EPC=180°.
∴∠CPE=180°-∠ABC=180°-65°=115°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)C在以AB為直徑的⊙O上,AD與過(guò)點(diǎn)C的切線CD垂直,垂足為點(diǎn)D.
求證:AC平分∠DAB;
(2)如圖2,△ABC為等腰三角形,AB=AC,O是BC的中點(diǎn),AB與⊙O相切于點(diǎn)D.
求證:是⊙的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為(m2),種草所需費(fèi)用1(元)與(m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費(fèi)用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+30000(0≤≤1000).
(1)請(qǐng)直接寫出k1、k2和b的值;
(2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請(qǐng)利用W與的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請(qǐng)求出綠化總費(fèi)用W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)E以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A開始沿邊AB向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)F以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)B開始沿邊BC向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)E比動(dòng)點(diǎn)F先出發(fā)1秒,其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng)設(shè)點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒.
(1)如圖1,連接DE,AF.若DE⊥AF,求t的值;
(2)如圖2,連結(jié)EF,DF.當(dāng)t為何值時(shí),△EBF∽△DCF?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】投資1萬(wàn)元圍一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長(zhǎng)24 m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長(zhǎng)為x m.
(1)設(shè)垂直于墻的一邊長(zhǎng)為y m,直接寫出y與x之間的函數(shù)關(guān)系式;
(2)若菜園面積為384 m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB∥y軸,AB=3,反比例函數(shù)y=-的圖象經(jīng)過(guò)點(diǎn)B,與AC交于點(diǎn)D,且CD=2AD,則點(diǎn)D的橫坐標(biāo)是( )
A.-1B.-2C.-3D.-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,AB=4,點(diǎn)C,點(diǎn)D在⊙O上,CD=2,直線AD,BC交于點(diǎn)E.
(1)如圖,若點(diǎn)E在⊙O外,求∠AEB的度數(shù).
(2)若DC∥AB,試求出△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,BC=4,以線段AB為邊作△ABD,使得AD=BD,連接DC,再以DC為邊作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如圖2,當(dāng)∠ABC=45°且α=90°時(shí),用等式表示線段AD,DE之間的數(shù)量關(guān)系;
(2)將線段CB沿著射線CE的方向平移,得到線段EF,連接BF,AF.
①若α=90°,依題意補(bǔ)全圖3,求線段AF的長(zhǎng);
②請(qǐng)直接寫出線段AF的長(zhǎng)(用含α的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com