【題目】如圖,在菱形ABCD中,對角線ACBD交于點O,過點AAEBC于點E,延長BCF,使CFBE,連接DF

1)求證:四邊形AEFD是矩形;(2)若BF8,DF4,求CD的長.

【答案】1)見解析;(2CD5

【解析】

1)根據(jù)菱形的性質(zhì)得到ADBCADBC,等量代換得到BCEF,推出四邊形AEFD是平行四邊形,根據(jù)矩形的判定定理即可得到結(jié)論,

2)設(shè)BCCDx,則CF8x根據(jù)勾股定理即可得到結(jié)論.

1)證明:∵在菱形ABCD中,

ADBCADBC,

BECF,

BCEF

ADEF,

ADEF

∴四邊形AEFD是平行四邊形,

AEBC,

∴∠AEF90°,

∴四邊形AEFD是矩形.

2)解:設(shè)BCCDx,則CF8x,

RtDCF中,

x2=(8x2+42 ,

x5,

CD5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到社會的廣泛關(guān)注,某校政教處對部分學生就校園安全知識的了解程度,進行了隨機抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學生共有______名;

(2)請補全折線統(tǒng)計圖,并求出扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A、C在平面直角坐標系的坐標軸上,AB=4,CB=3,點D與點A關(guān)于y軸對稱,點E、F分別是線段DA、AC上的動點(點E不與A、D重合),且∠CEF=ACB,若△EFC為等腰三角形,則點E的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是七年級二班參加社團活動人數(shù)的扇形統(tǒng)計圖(每位同學只參加其中一個社團).根據(jù)統(tǒng)計圖提供的信息,下列結(jié)論正確的是(

A. 參加攝影社的人數(shù)占總?cè)藬?shù)的

B. 參加篆刻社的扇形的圓心角度數(shù)是

C. 參加種植社的同學比參加舞蹈社的多

D. 若參加書法社的人數(shù)是人,則該班有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊BC上的一動點(不與點BC重合),連接DE、點C關(guān)于直線DE的對稱點為C′,連接AC′并延長交直線DE于點P,FAC′的中點,連接DF

1)求∠FDP的度數(shù);

2)連接BP,請用等式表示APBP、DP三條線段之間的數(shù)量關(guān)系,并證明;

3)連接AC,若正方形的邊長為,請直接寫出△ACC′的面積最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的相似對角線;

理解:

如圖1,ABC的三個頂點均在正方形網(wǎng)格中的格點上,若四邊形ABCD是以AC相似對角線的四邊形,請用無刻度的直尺在網(wǎng)格中畫出點D(保留畫圖痕跡,找出3個即可);

如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對角線BD平分∠ABC. 請問BD是四邊形ABCD相似對角線嗎?請說明理由;

運用:

如圖3,已知FH是四邊形EFGH相似對角線, EFH=∠HFG30°.連接EG,若EFG的面積為,求FH 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師將1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓學生進行摸球試驗,每次摸出一個球(放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.23

0.21

0.30

0.26

0.253

1= ,根據(jù)上表數(shù)據(jù)估計從袋中摸出一個黑球的概率是   

2)估算袋中白球的個數(shù)為   

3)在(2)的條件下,若小強同學從袋中摸出兩個球,用畫樹狀圖或列表的方法計算摸出的兩個球都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為2,∠B50°,AC5,求圖中陰影部分的周長.

查看答案和解析>>

同步練習冊答案