【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:

當m=-3時,函數(shù)圖象的頂點坐標是(,;

當m>0時,函數(shù)圖象截x軸所得的線段長度大于;

當m<0時,函數(shù)在,y隨x的增大而減小;

當m≠0時,函數(shù)圖象經(jīng)過x軸上一個定點.

其中正確的結(jié)論有________ .(只需填寫序號)

【答案】①②④

【解析】

試題因為函數(shù)y=ax2+bx+c的特征數(shù)為[2m,1﹣m,﹣1﹣m];

當m=﹣3時,y=﹣6x2+4x+2=﹣6(x﹣2+,頂點坐標是(,;此結(jié)論正確;

當m>0時,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得x=,x1=1,x2=,

|x2﹣x1|=,所以當m>0時,函數(shù)圖象截x軸所得的線段長度大于,此結(jié)論正確;

當m<0時,y=2mx2+(1﹣m)x+(﹣1﹣m) 是一個開口向下的拋物線,其對稱軸是:,在對稱軸的右邊y隨x的增大而減。驗楫攎<0時,=,即對稱軸在x=右邊,因此函數(shù)在x=右邊先遞增到對稱軸位置,再遞減,此結(jié)論錯誤;

當x=1時,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即對任意m,函數(shù)圖象都經(jīng)過點(1,0)那么同樣的:當m=0時,函數(shù)圖象都經(jīng)過同一個點(1,0),當m≠0時,函數(shù)圖象經(jīng)過同一個點(1,0),故當m≠0時,函數(shù)圖象經(jīng)過x軸上一個定點此結(jié)論正確.

根據(jù)上面的分析,①②④都是正確的,是錯誤的

故答案是①②④

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線軸交于兩點,過點的直線分別與軸及拋物線交于點

1)求直線和拋物線的表達式

2)動點從點出發(fā),在軸上沿的方向以每秒1個單位長度的速度向左勻速運動,設運動時間為秒,當為何值時,為直角三角形?請直接寫出所有滿足條件的的值.

3)如圖2,將直線沿軸向下平移4個單位后,與軸,軸分別交于兩點,在拋物線的對稱軸上是否存在點,在直線上是否存在點,使的值最?若存在,求出其最小值及點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個邊長為4cm的等邊三角形ABC的高與⊙O的直徑相等.⊙OBC相切于點C,與AC相交于點E,則劣弧的長=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a2b=﹣3時,分別求代數(shù)式a22ab+b2和(ab2的值.

a=﹣,b=﹣2.25時,分別求代數(shù)式a22ab+b2和(ab2的值.

猜想這兩個代數(shù)式的值有何關(guān)系?

根據(jù)猜想用簡便方法算出當a2018,b2021時,代數(shù)式a22ab+b2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)yax2+bx+ca≠0)的圖象如圖,給出下列4個結(jié)論:①abc0 b24ac; 4a+2b+c0;④2a+b0.其中正確的有( 。﹤.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某小組做用頻率估計概率“的實驗時,繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實驗可能是(

A. 拋一枚硬幣,出現(xiàn)正面朝上

B. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球

C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

D. 擲一枚均勻的正六面體骰子,出現(xiàn)3點朝上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知二次函數(shù)y=ax2+bx+cyx的部分對應值如下表;

x

-1

0

1

3

y

-3

1

3

1

下列結(jié)論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當xl時,函數(shù)值yx 的增大而增大;④方程ax2+bx+c=0有一個根大于4.其中正確的結(jié)論有(

A. 4個B. 1個C. 3個D. 2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC,∠C=90°,AB=10cm,BC=8cm,P從點A沿AC向點C1cm/s的速度運動,同時點Q從點C沿CB向點B2cm/s的速度運動Q運動到點B停止),在運動過程中,四邊形PABQ的面積最小值為cm2

A. 19 B. 16 C. 15 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,DBC上一點,EAC上一點,點GBE上,聯(lián)結(jié)DG并延長交AE于點F,∠BGD=BAD=C

1)求證:

2)如果∠BAC=90°,求證:AGBE

查看答案和解析>>

同步練習冊答案