【題目】如圖,直線AB,CD相交于點O,射線OM平分∠AOC,ON⊥OM,且∠BON=55°,求∠BOD的度數(shù).
【答案】解:∵ON⊥OM, ∴∠MON=90°,
∵∠BON=55°,
∴∠AOM=180°﹣90°﹣55°=35°,
∵射線OM平分∠AOC,
∴∠AOC=2∠AOM=70°,
∴∠BOD=∠AOC=70°.
【解析】首先根據(jù)垂線的定義和已知條件求出∠AOM的度數(shù),根據(jù)角平分線的定義求出∠AOC的度數(shù),根據(jù)對頂角相等的性質即可得出所求.
【考點精析】根據(jù)題目的已知條件,利用角的平分線和對頂角和鄰補角的相關知識可以得到問題的答案,需要掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個.
科目:初中數(shù)學 來源: 題型:
【題目】下列四個命題,其中真命題有( )
(1)有理數(shù)乘以無理數(shù)一定是無理數(shù);
(2)順次連接等腰梯形各邊中點所得的四邊形是菱形;
(3)在同圓中,相等的弦所對的弧也相等;
(4)如果正九邊形的半徑為a,那么邊心距為asin20°.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:
①∠EBG=45°
②△DEF≌△ABG
③S△ABG=32S△FGH
④AG+DF=FG
其中正確的個數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長為16m,寬為6m,拋物線的最高點C離地面AA1的距離為8m.
(1)按如圖所示的直角坐標系,求表示該拋物線的函數(shù)表達式.
(2)一大型汽車裝載某大型設備后,高為7m,寬為4m,如果該隧道內設雙向行車道,那么這輛貸車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當點A在四邊形BCDE的外部時,記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關系,結論正確的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明打算用一塊面積為900cm2的正方形木板,沿著邊的方向裁出一個長方形面積為588cm2桌面,并且的長寬之比為4:3,你認為能做到嗎?如果能,計算出桌面的長和寬;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖所示的方式疊放在一起.
(1)若∠DCE=45°,則∠ACB的度數(shù)為;
(2)若∠ACB=140°,求∠DCE的度數(shù);
(3)猜想∠ACB與∠DCE之間存在什么數(shù)量關系?并說明理由;
(4)當∠ACE<90°且點E在直線AC的上方時,這兩塊三角尺是否存在AD與BC平行的情況?若存在,請直接寫出∠ACE的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年4月8日,中國財經(jīng)新聞報道中國3月外匯儲備30090.9億,這個數(shù)據(jù)用科學記數(shù)法表示為( )
A.3.00909×104
B.3.00909×105
C.3.00909×1012
D.3.00909×1013
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com