【題目】如圖,⊙O是△ABC的內(nèi)切圓,切AB,AC于點D、E,∠DOE=110°,則∠BOC的度數(shù)為( 。
A.115°B.120°C.125°D.135°
【答案】C
【解析】
根據(jù)內(nèi)切圓的性質(zhì)可得AD⊥OD,AC⊥OE,再求得∠A=360°﹣2×90°﹣110°=70°,然后利用角平分線的性質(zhì)求出∠BOC=125°.
解:∵⊙O是△ABC的內(nèi)切圓,切AB,AC于點D、E,
∴AD⊥OD,AC⊥OE,
∴∠ADO=∠AEO=90°,
∵∠DOE=110°,
∴∠A=360°﹣2×90°﹣110°=70°,
∴∠ABC+∠ACB=180°﹣70°=110°,
∵O為△ABC內(nèi)心,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=55°,
∴∠BOC=180°﹣55°=125°,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)的說法錯誤的是( 。
A.拋物線y=﹣2x2+3x+1的對稱軸是直線
B.函數(shù)y=2x2+4x﹣3的圖象的最低點在(﹣1,﹣5)
C.二次函數(shù)y=(x+2)2+2的頂點坐標(biāo)是(﹣2,2)
D.點A(3,0)不在拋物線y=x2﹣2x﹣3上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點的切線AP與BC的延長線交于點P,∠APB的平分線分別交AB,AC于點D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個實數(shù)根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點M,使得四邊形ADME是菱形?若存在,請給予證明,并求其面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為10,點M是邊AB上一動點,將等邊△ABC沿過點M的直線折疊,該直線與直線AC交于點N,使點A落在直線BC上的點D處,且BD:DC=1:4,折痕為MN,則AN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個.若從中任意摸出一個球,這個球是白球的概率為0.5.
(1)求口袋中紅球的個數(shù).
(2)從袋中任意摸出一球,放回?fù)u勻后,再摸出一球,則兩次都摸到白球的概率是多少?請你用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑,如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.設(shè)每個房間定價增加10x元(x為整數(shù)).
(1)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式;
(2)設(shè)賓館每天的利潤為w元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓O中,弦AB=8,點C在圓O上(C與A,B不重合),連接CA、CB,過點O分別作OD⊥AC,OE⊥BC,垂足分別是點D、E.
(1)求線段DE的長;
(2)點O到AB的距離為3,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”
用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,動點從點出發(fā)以的速度向點移動,同時動點從點出發(fā)以的速度向點移動,設(shè)它們的運動時間為.
(1)為何值時,的面積等于面積的;
(2)運動幾秒時,與相似?
(3)在運動過程中,的長度能否為?試說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com