【題目】已知:如圖,△ABC 中,∠CAB=90°,AC=AB,點 D、E 是 BC 上的兩點,且∠DAE=45°,△ADC 與△ADF 關(guān)于直線AD 對稱.
(1)求證:△AEF≌△AEB;
(2)求∠DFE 的度數(shù).
【答案】(1)詳見解析;(2)90°.
【解析】
(1)根據(jù)折疊的性質(zhì)得到△ADF≌△ADC,根據(jù)全等三角形的性質(zhì)得到AC=AF,CD=FD,∠C=∠DFA,∠CAD=∠FAD,由于AB=AC,于是得到AF=AB,證得∠FAE=∠BAE,即可得到結(jié)論;
(2)由(1)知△AFE≌△ABE,根據(jù)全等三角形的性質(zhì)得到∠AFE=∠B,即可得到結(jié)論.
(1)∵把△ADC沿著AD折疊,得到△ADF,∴△ADF≌△ADC;
∴AC=AF,CD=FD,∠C=∠DFA,∠CAD=∠FAD.
∵AB=AC,∴AF=AB.
∵∠DAE=45°,∴∠CAD+∠BAE=45°.
∵∠CAD=∠FAD,∴∠FAE=∠BAE.
在△AFE與△ABE中,∵,∴△AEF≌△AEB;
(2)由(1)知△AEF≌△AEB,∴∠AFE=∠B.
∵∠C=∠DFA,∴∠DFE=∠DFA+∠EFA=∠B+∠C=90°.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數(shù)根x1 , x2 .
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,點E,F,G,H分別在邊AB,BC,CD,DA上,點P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2,則四邊形PFCG的面積為_______cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店今年1月份購進一批筆記本,共2290本,每本進價為10元,該文具店決定從2月份開始進行銷售,若每本售價為11元,則可全部售出;且每本售價每增長0.5元,銷量就減少15本.
(1)若該種筆記本在2月份的銷售量不低于2200本,則2月份售價應(yīng)不高于多少元?
(2)由于生產(chǎn)商提高造紙工藝,該筆記本的進價提高了10%,文具店為了增加筆記本的銷量,進行了銷售調(diào)整,售價比中2月份在(1)的條件下的最高售價減少了 m%,結(jié)果3月份的銷量比2月份在(1)的條件下的最低銷量增加了m%,3月份的銷售利潤達到6600元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示.請你根據(jù)圖象提供的信息完成以下問題:
(1)求降價前銷售金額y(元)與售出西瓜x(千克)之間的函數(shù)關(guān)系式.
(2)小明從批發(fā)市場共購進多少千克西瓜?
(3)小明這次賣瓜賺了多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com