分析 (1)根據(jù)角平分線的定義可得∠A1BC=$\frac{1}{2}$∠ABC,∠A1CD=$\frac{1}{2}$∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;
(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;
(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.
解答 解:(1)∵A1B是∠ABC的平分線,A1C是∠ACD的平分線,
∴∠A1BC=$\frac{1}{2}$∠ABC,∠A1CD=$\frac{1}{2}$∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
∴$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠ABC+∠A1,
∴∠A1=$\frac{1}{2}$∠A,
∵∠A=80°,
∴∠A1=40°,
(2)解:∵A1B、A1C分別平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠An,即∠An=$\frac{1}{{2}^{n}}$∠A,
∴∠A6=$\frac{1}{{2}^{6}}$×80°=($\frac{5}{4}$)°,
故答案為:($\frac{5}{4}$)°.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=$\frac{1}{2}$(∠A+∠D)-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案為:25°.
(4)△ABC中,由三角形的外角性質(zhì)知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);
即:2∠A1=2(180°-∠Q),
化簡得:∠A1+∠Q=180°,
因此①的結(jié)論是正確的,且這個(gè)定值為180°.
故答案為:①,180°.
點(diǎn)評(píng) 本題考查了多邊形內(nèi)角與外角和角平分線的定義,三角形的內(nèi)角和定理,角平分線的定義,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵,要注意整體思想的利用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com