【題目】如圖,ABO的直徑,DEO上位于AB異側的兩點,連結BD并延長至點C,使得CDBD,連結ACO于點F,連接BEDEDF

1)若∠E35°,求∠BDF的度數(shù).

2)若DF4,cosCFD,E的中點,求DE的長.

【答案】1)∠BDF110°;(2DE2+

【解析】

1)連接EF,BF,由AB是⊙O的直徑,得到∠AFB=BFC=90°,推出,得到∠DEF=BED=35°,根據(jù)圓內接四邊形的性質即可得到結論;

2)連接AD,OE,過BBGDEG,解直角三角形得到AB=6,由E的中點,AB是⊙O的直徑,得到∠AOE=90°,根據(jù)勾股定理即可得到結論.

1)如圖1,連接EFBF,

AB是⊙O的直徑,

∴∠AFB=∠BFC90°,

CDBD,

DFBDCD

,

∴∠DEF=∠BED35°,

∴∠BEF70°

∴∠BDF180°﹣∠BEF110°;

2)如圖2,連接AD,OE,過BBGDEG,

∵∠CFD=∠ABD,

cosABDcosCFD,

RtABD中,BDDF4,

AB6,

E的中點,AB是⊙O的直徑,

∴∠AOE90°,

BOOE3,

BE3,

∴∠BDE=∠ADE45°

DGBGBD2,

GE,

DEDG+GE2+

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點AB.點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設點P的橫坐標為m

1)點A的坐標為   

2)求這條拋物線所對應的函數(shù)表達式.

3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.

4)若E、FP三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、FP三點為“共諧點”.直接寫出E、FP三點成為“共諧點”時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點EBC上一點,連接AE,點FAE上一點,連接FC,若∠BAE=∠EFC,CFCDABBC32,AF4,則FC的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用2500元購進AB兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、標價如下表所示.

類型

價格

A

B

進價(元/盞)

40

65

標價(元/盞)

60

100

1)這兩種臺燈各購進多少盞?

2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知、,By軸上的動點,以AB為邊構造,使點Cx軸上,BC的中點,則PM的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對角線BD上一點,連接AECE

1)求證:AE=CE;

2)若BC=,BE=6,求tanBAE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點,連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①、圖②均是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,點A、BM、N均落在格點上,在圖①、圖②給定的網(wǎng)格中按要求作圖.

1)在圖①中的格線MN上確定一點P,使PAPB的長度之和最小

2)在圖②中的格線MN上確定一點Q,使∠AQM=∠BQM

要求:只用無刻度的直尺,保留作圖痕跡,不要求寫出作法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ymx﹣1交y軸于點B,交x軸于點C,以BC為邊的正方形ABCD的頂點A(﹣1,a)在雙曲線y=﹣x<0)上,D點在雙曲線yx>0)上,則k的值為( 。

A. 6 B. 5 C. 3 D. 2

查看答案和解析>>

同步練習冊答案