【題目】如圖,在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),連接AE,點(diǎn)F是AE上一點(diǎn),連接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,則FC的長(zhǎng)為_____.
【答案】6
【解析】
根據(jù)矩形的性質(zhì)得到AB=CD,過(guò)B作BG⊥AE于G,過(guò)C作CH⊥AE于H,根據(jù)全等三角形的性質(zhì)得到AG=FH,BG=CH,求得AF=GH=4,根據(jù)全等三角形的性質(zhì)得到GE=HE=2,BE=CE,設(shè)AB=CF=3x,BC=2x,根據(jù)勾股定理得到AE==,列方程即可得到結(jié)論.
解:∵四邊形ABCD是矩形,
∴AB=CD,
∵CF=CD,
∴AB=CF,
過(guò)B作BG⊥AE于G,過(guò)C作CH⊥AE于H,
∴∠AGB=∠FHC=90°,
在△ABG與△FCH中,
,
∴△ABG≌△FCH(AAS),
∴AG=FH,BG=CH,
∴AF=GH=4,
在△EBG與△ECH中,
,
∴△EBG≌△ECH(AAS),
∴GE=HE=2,BE=CE,
∵AB:BC=3:2,
∴設(shè)AB=CF=3x,BC=2x,
∴BE=CE=x,
∴AE==,
∵∠ABC=90°,BG⊥AE,
∴△BEG∽AEB,
∴BE2=EGAE,
∴AE=,
∴,
∴x=2,x=0(不合題意舍去),
∴CF=3x=6,
故答案為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)準(zhǔn)備舉辦一次演講比賽,每班限定兩人報(bào)名,初三(1)班的三位同學(xué)(兩位女生,一位男生)都想報(bào)名參加,班主任李老師設(shè)計(jì)了一個(gè)摸球游戲,利用已學(xué)過(guò)的概率知識(shí)來(lái)決定誰(shuí)去參加比賽,游戲規(guī)則如下:在一個(gè)不透明的箱子里放3個(gè)大小質(zhì)地完全相同的乒乓球,在這3個(gè)乒乓球上分別寫(xiě)上、、(每個(gè)字母分別代表一位同學(xué),其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機(jī)摸出一個(gè)乒乓球,不放回,再次攪勻后隨機(jī)摸出第二個(gè)乒乓球,根據(jù)乒乓球上的字母決定誰(shuí)去參加比賽。
(1)求李老師第一次摸出的乒乓球代表男生的概率;
(2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選定一名男生和一名女生參賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線(xiàn).作BM=AB并與AP交于點(diǎn) M,延長(zhǎng)MB交AC于點(diǎn)E,交⊙O于點(diǎn)D,連接AD、BC.
(1)求證:AB=BE;
(2)若BE=3,OC=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知以的邊為直徑作的外接圓的平分線(xiàn)交于,交于,過(guò)作交的延長(zhǎng)線(xiàn)于.
(1)求證:是切線(xiàn);
(2)若求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別是AB、BC的中點(diǎn),過(guò)點(diǎn)C作CF∥AB,與DE的延長(zhǎng)線(xiàn)并交于點(diǎn)F,連接BF.
(1)試判斷四邊形CDBF的形狀,并說(shuō)明理由;
(2)若CD=5,sin∠CAB=,過(guò)點(diǎn)C作CH⊥BF,垂足為H點(diǎn),試求CH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AB=AC,點(diǎn)D是AB上一點(diǎn),以BD為直徑的⊙0與AC邊相切于點(diǎn)E,交BC于點(diǎn)F,FG⊥AC于點(diǎn)G.
(1)如圖l,求證:GE=GF;
(2)如圖2,連接DE,∠GFC=2∠AED,求證:△ABC為等邊三角形;
(3)如圖3,在(2)的條件下,點(diǎn)H、K、P分別在AB、BC、AC上,AK、BP分別交CH于點(diǎn)M、N,AH=BK,∠PNC﹣∠BAK=60°,CN=6,CM=4,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分10分)(1)如圖1,在△ABC中,點(diǎn)D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點(diǎn)P.求證:.
(2)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫(xiě)出MN的長(zhǎng);
②如圖3,求證MN2=DM·EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問(wèn)題:如圖3,在中,,點(diǎn)為的延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn),直接寫(xiě)出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)市政府關(guān)于“垃圾不落地市區(qū)更美麗”的主題宣傳活動(dòng),鄭州外國(guó)語(yǔ)中學(xué)隨機(jī)調(diào)查了部分學(xué)生對(duì)垃圾分類(lèi)知識(shí)的掌握情況,調(diào)查選項(xiàng)分為“A:非常了解;B:比較了解;C:了解較少;D:不了解”四種,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題;
求______,并補(bǔ)全條形統(tǒng)計(jì)圖;
若我校學(xué)生人數(shù)為1000名,根據(jù)調(diào)查結(jié)果,估計(jì)該!胺浅A私狻迸c“比較了解”的學(xué)生共有______名;
已知“非常了解”的是3名男生和1名女生,從中隨機(jī)抽取2名向全校做垃圾分類(lèi)的知識(shí)交流,請(qǐng)畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到1男1女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com