【題目】如圖,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,點(diǎn)C、D分別在邊OA、OB上的點(diǎn).連接AD,BC,點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1,求證:OH=AD,OH⊥AD;
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)成立,證明見(jiàn)解析
【解析】
(1)只要證明△AOD≌△BOC(SAS),即可解決問(wèn)題;
(2)如圖2中,結(jié)論:OH=AD,OH⊥AD.延長(zhǎng)OH到E,使得HE=OH,連接BE,證明△BEH≌△CHO(SAS),可得OE=2OH,∠EBC=∠BCO,證明△BEO≌△ODA(SAS)即可解決問(wèn)題;
(1)∵△OAB與△OCD為等腰直角三角形,∠AOB=∠COD=90°.
∴OC=OD,OA=OB
在△AOD與△BOC中
∴△AOD≌△BOC(SAS)
∴∠ADO=∠BCO,∠OAD=∠OBC,BC=AD
∵點(diǎn)H是BC的中點(diǎn),∠AOB=90°
∴OH=HB=
∴∠OBH=∠HOB=∠OAD,OH=
∵∠OAD+∠ADO=90°
∴∠ADO+∠BOH=90°
∴OH⊥AD
(2)(1)中結(jié)論成立;如圖,延長(zhǎng)OH到E,使得HE=OH,連接BE,CE
∵CH=BH
∴四邊形BOCE是平行四邊形
∴BE=OC,EB∥OC,OH=OE
∴∠EBO+∠COB=180°
∵∠COB+∠BOD=90°,∠BOD+∠1=90°
∴∠1=∠COB
∵∠AOD+∠1=180°
∴∠AOD=∠EBO
∴△BEO≌△ODA
∴∠EOB=∠DAO,OE=AD
∴OH=AD
∴∠DAO+∠AOH=∠EOB+∠AOH=90°
∴OH⊥AD
【點(diǎn)晴】
本題屬于幾何變換綜合題,考查了旋轉(zhuǎn)變換,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形三邊關(guān)系等知識(shí),構(gòu)造全等三角形解決問(wèn)題是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC、BC邊上,C、D兩點(diǎn)不重合,設(shè)CD的長(zhǎng)度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,其中a,b滿足
(1)填空:a= ,b= ;
(2)如果在第三象限內(nèi)有一點(diǎn)C(-2,m),請(qǐng)用含m的式子表示△ABC的面積;
(3)在⑵條件下,當(dāng)時(shí),在y軸上有一點(diǎn)P,使得△BMP的面積與△ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年2月14日,備受關(guān)注的《成都市中小學(xué)課后服務(wù)實(shí)施意見(jiàn)》正式出臺(tái).某區(qū)為了解“家長(zhǎng)更希望如何安排孩子放學(xué)后的時(shí)間”,對(duì)該區(qū)七年級(jí)部分家長(zhǎng)進(jìn)行了一次問(wèn)卷調(diào)查(每位同學(xué)只選擇一位家長(zhǎng)參與調(diào)查),將調(diào)查結(jié)果(.回家,家人陪伴;.學(xué)校課后延時(shí)服務(wù);.校外培訓(xùn)機(jī)構(gòu);.社會(huì)托管班)繪制成以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查的家長(zhǎng)總?cè)藬?shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖:扇形統(tǒng)計(jì)圖中,類(lèi)所對(duì)應(yīng)的圓心角為 度;
(3)若該區(qū)共有七年級(jí)學(xué)生人,則愿意參加“學(xué)生課后延時(shí)服務(wù)”的人數(shù)大概是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為等邊三角形,是邊上一點(diǎn),在上取一點(diǎn),使,在邊上取一點(diǎn),使,則的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在銷(xiāo)售一種產(chǎn)品進(jìn)價(jià)為10元的產(chǎn)品時(shí),每年總支出為10萬(wàn)元(不含進(jìn)貨支出).經(jīng)過(guò)若干年銷(xiāo)售得知,年銷(xiāo)售量 (萬(wàn)件)是銷(xiāo)售單價(jià) (元)的一次函數(shù),并得到如下部分?jǐn)?shù)據(jù):
銷(xiāo)售單價(jià) (元) | 12 | 14 | 16 | 18 |
年銷(xiāo)售量(萬(wàn)件) | 7 | 6 | 5 | 4 |
(1)求出關(guān)于的函數(shù)關(guān)系式;
(2)寫(xiě)出該公司銷(xiāo)售這種產(chǎn)品的年利潤(rùn) (萬(wàn)元)關(guān)于銷(xiāo)售單價(jià) (元)的函數(shù)關(guān)系式;當(dāng)銷(xiāo)售單價(jià)為何值時(shí),年利潤(rùn)最大?
(3)試通過(guò)(2)中的函數(shù)關(guān)系式及其大致圖象,幫助該公司確定產(chǎn)品的銷(xiāo)售單價(jià)范圍,使年利潤(rùn)不低于20萬(wàn)元(請(qǐng)直接寫(xiě)出銷(xiāo)售單價(jià)的范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛摩拜單車(chē)放在水平的地面上,車(chē)把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BC與AB的夾角分別為45°與68°,若點(diǎn)C到地面的距離CD為28cm,坐墊中軸E處與點(diǎn)B的距離BE為4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C三點(diǎn)在同一直線上,∠DAE=∠AEB,∠D=∠BEC,
(1)求證:BD∥CE;
(2)若∠C=70°,∠DAC=50°,求∠DBE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】興發(fā)服裝店老板用4500元購(gòu)進(jìn)一批某款T恤衫,由于深受顧客喜愛(ài),很快售完,老板又用4950元購(gòu)進(jìn)第二批該款式T恤衫,所購(gòu)數(shù)量與第一批相同,但每件進(jìn)價(jià)比第一批多了9元.
(1)第一批該款式T恤衫每件進(jìn)價(jià)是多少元?
(2)老板以每件120元的價(jià)格銷(xiāo)售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時(shí),出現(xiàn)了滯銷(xiāo),于是決定降價(jià)促銷(xiāo),若要使第二批的銷(xiāo)售利潤(rùn)不低于650元,剩余的T恤衫每件售價(jià)至少要多少元?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com