精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點C、D分別在邊OA、OB上的點.連接AD,BC,點HBC中點,連接OH

1)如圖1,求證:OHAD,OHAD;

2)將COD繞點O旋轉到圖2所示位置時,⑴中結論是否仍成立?若成立,證明你的結論;若不成立,請說明理由.

【答案】1)見解析;(2)成立,證明見解析

【解析】

1)只要證明AOD≌△BOCSAS),即可解決問題;

2)如圖2中,結論:OH=AD,OHAD.延長OHE,使得HE=OH,連接BE,證明BEH≌△CHOSAS),可得OE=2OH,∠EBC=BCO,證明BEO≌△ODASAS)即可解決問題;

1)∵△OABOCD為等腰直角三角形,∠AOB=∠COD90°

OCODOAOB

AODBOC

∴△AOD≌△BOCSAS

∴∠ADO=∠BCO,∠OAD=∠OBC,BCAD

∵點HBC的中點,∠AOB90°

OHHB

∴∠OBH=∠HOB=∠OAD,OH

∵∠OAD+∠ADO90°

∴∠ADO+∠BOH90°

OHAD

2)(1)中結論成立;如圖,延長OHE,使得HEOH,連接BECE

CHBH

∴四邊形BOCE是平行四邊形

BEOC,EBOCOHOE

∴∠EBO+∠COB180°

∵∠COB+∠BOD90°,∠BOD+∠190°

∴∠1=∠COB

∵∠AOD+∠1180°

∴∠AOD=∠EBO

∴△BEO≌△ODA

∴∠EOB=∠DAO,OEAD

OHAD

∴∠DAO+∠AOH=∠EOB+∠AOH90°

OHAD

【點晴】

本題屬于幾何變換綜合題,考查了旋轉變換,等腰直角三角形的性質,全等三角形的判定和性質,三角形三邊關系等知識,構造全等三角形解決問題是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,RtABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上,CD兩點不重合,設CD的長度為xABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數關系的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知,其中a,b滿足

1)填空:a= ,b= ;

2)如果在第三象限內有一點C(-2,m),請用含m的式子表示△ABC的面積;

3)在⑵條件下,當時,在y軸上有一點P,使得△BMP的面積與△ABM的面積相等,請求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019214日,備受關注的《成都市中小學課后服務實施意見》正式出臺.某區(qū)為了解家長更希望如何安排孩子放學后的時間,對該區(qū)七年級部分家長進行了一次問卷調查(每位同學只選擇一位家長參與調查),將調查結果(.回家,家人陪伴;.學校課后延時服務;.校外培訓機構;.社會托管班)繪制成以下兩幅不完整的統(tǒng)計圖.請根據圖中提供的信息,解答下列問題:

1)本次調查的家長總人數為

2)補全條形統(tǒng)計圖:扇形統(tǒng)計圖中,類所對應的圓心角為 度;

3)若該區(qū)共有七年級學生人,則愿意參加學生課后延時服務的人數大概是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為等邊三角形,邊上一點,在上取一點,使,在邊上取一點,使,則的度數為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司在銷售一種產品進價為10元的產品時,每年總支出為10萬元(不含進貨支出).經過若干年銷售得知,年銷售量 (萬件)是銷售單價 ()的一次函數,并得到如下部分數據:

銷售單價 (元)

12

14

16

18

年銷售量(萬件)

7

6

5

4

(1)求出關于的函數關系式;

(2)寫出該公司銷售這種產品的年利潤 (萬元)關于銷售單價 ()的函數關系式;當銷售單價為何值時,年利潤最大?

(3)試通過(2)中的函數關系式及其大致圖象,幫助該公司確定產品的銷售單價范圍,使年利潤不低于20萬元(請直接寫出銷售單價的范圍).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現測得AC、BCAB的夾角分別為45°68°,若點C到地面的距離CD28cm,坐墊中軸E處與點B的距離BE4cm,求點E到地面的距離(結果保留一位小數).(參考數據:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABC三點在同一直線上,∠DAE=∠AEB∠D=∠BEC,

1)求證:BD∥CE

2)若∠C=70°,∠DAC=50°,求∠DBE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數量與第一批相同,但每件進價比第一批多了9元.

1)第一批該款式T恤衫每件進價是多少元?

2)老板以每件120元的價格銷售該款式T恤衫,當第二批T恤衫售出時,出現了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價進價)

查看答案和解析>>

同步練習冊答案