【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BCAB的夾角分別為45°68°,若點(diǎn)C到地面的距離CD28cm,坐墊中軸E處與點(diǎn)B的距離BE4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

【答案】點(diǎn)E到地面的距離約為66.7cm

【解析】分析:過點(diǎn)CCH⊥ABH,過點(diǎn)EEF⊥AB延長(zhǎng)線于點(diǎn)F,設(shè)CH=x,則AH=CH=x,BH=CHcot68°=0.4x,由AB=49x+0.4x=49,解之求得CH的長(zhǎng),再由EF=BEsin68°=3.72,根據(jù)點(diǎn)E到地面的距離為CH+CD+EF可得答案.

本題解析:過點(diǎn)C作⊥AB于點(diǎn)H,過點(diǎn)EEF⊥AB延長(zhǎng)線于點(diǎn)F,

設(shè)CH=x,AH=CH=x, BH=CHcot68°=0.4x,

AB=49x+0.4x=49,

解得x=35,∵BE=4,∴EF= BEsin68°=3.72,

則點(diǎn)E到地面的距離為CH+CD+EF=35+28+3.72≈66.7(cm)

答:點(diǎn)E到地面的距離為66.7cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】許多代數(shù)恒等式可以借助圖形的面積關(guān)系直觀表達(dá),如圖①,根據(jù)圖中面積關(guān)系可以得到:。

1)如圖②,根據(jù)圖中面積關(guān)系,寫出一個(gè)關(guān)于的等式   ;

2)利用(1)中的等式求解:,則   

3)小明用8個(gè)面積一樣大的長(zhǎng)方形(寬,長(zhǎng))拼圖,拼出了如圖甲、乙的兩種圖案;圖案甲是一個(gè)大的正方形,中間陰影部分是邊長(zhǎng)為3的小正方形;圖案乙是一個(gè)大的長(zhǎng)方形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加英語口語聽力大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,8182,8583 乙:88,79,90,81,72

回答下列問題:

1甲成績(jī)的平均數(shù)是  ,乙成績(jī)的平均數(shù)是  ;

2)求甲、乙兩名同學(xué)測(cè)試成績(jī)的方差S2S2

3)請(qǐng)你選擇一個(gè)角度來判斷選拔誰參加比賽更合適

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點(diǎn)C、D分別在邊OA、OB上的點(diǎn).連接ADBC,點(diǎn)HBC中點(diǎn),連接OH

1)如圖1,求證:OHAD,OHAD;

2)將COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機(jī)選取了名學(xué)生,對(duì)他們喜歡的運(yùn)動(dòng)項(xiàng)目進(jìn)行調(diào)查,整理成以下統(tǒng)計(jì)表,其中“√”表示喜歡,“×”表示不喜歡.

項(xiàng)目
學(xué)生數(shù)

長(zhǎng)跑

短跑

跳繩

跳遠(yuǎn)

200

×

300

×

×

150

×

200

×

×

150

×

×

×

(1)估計(jì)該校學(xué)生同時(shí)喜歡短跑和跳繩的概率;

(2)估計(jì)該校學(xué)生在長(zhǎng)跑、短跑、跳繩、跳遠(yuǎn)中同時(shí)喜歡三個(gè)項(xiàng)目的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy,拋物線與x軸相交于點(diǎn)A-2,0)、B4,0),y軸交于點(diǎn)C0-4),BC與拋物線的對(duì)稱軸相交于點(diǎn)D

1)求該拋物線的表達(dá)式,并直接寫出點(diǎn)D的坐標(biāo);

2)過點(diǎn)AAEAC交拋物線于點(diǎn)E,求點(diǎn)E的坐標(biāo)

3)在(2)的條件下,點(diǎn)F在射線AE,ADF∽△ABC,求點(diǎn)F 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.(結(jié)果保留π

1)把圓片沿?cái)?shù)軸向左滾動(dòng)1周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是 數(shù)(填無理有理),這個(gè)數(shù)是 ;

2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是

3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,﹣1,+3,﹣4,﹣3.第幾次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最近?第幾次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)任意三個(gè)連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差是4的倍數(shù);

驗(yàn)證:(1 的結(jié)果是4的幾倍?

2)設(shè)三個(gè)連續(xù)的整數(shù)中間的一個(gè)為n,計(jì)算最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差,并說明它是4的倍數(shù);

延伸:說明任意三個(gè)連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個(gè)數(shù)的平方差是8的倍數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD、AE分別是∠BAC與∠BAC的外角的平分線,BEAE.求證:AB=DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案