【題目】興發(fā)服裝店老板用4500元購進(jìn)一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進(jìn)第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進(jìn)價比第一批多了9元.
(1)第一批該款式T恤衫每件進(jìn)價是多少元?
(2)老板以每件120元的價格銷售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進(jìn)價)
【答案】(1)第一批T恤衫每件的進(jìn)價是90元;(2)剩余的T恤衫每件售價至少要80元.
【解析】
(1)設(shè)第一批T恤衫每件進(jìn)價是x元,則第二批每件進(jìn)價是(x+9)元,再根據(jù)等量關(guān)系:第二批進(jìn)的件數(shù)=第一批進(jìn)的件數(shù)可得方程;
(2)設(shè)剩余的T恤衫每件售價y元,由利潤=售價﹣進(jìn)價,根據(jù)第二批的銷售利潤不低于650元,可列不等式求解.
解:(1)設(shè)第一批T恤衫每件進(jìn)價是x元,由題意,得
,
解得x=90
經(jīng)檢驗(yàn)x=90是分式方程的解,符合題意.
答:第一批T恤衫每件的進(jìn)價是90元.
(2)設(shè)剩余的T恤衫每件售價y元.
由(1)知,第二批購進(jìn)=50件.
由題意,得120×50×+y×50×﹣4950≥650,
解得y≥80.
答:剩余的T恤衫每件售價至少要80元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,點(diǎn)C、D分別在邊OA、OB上的點(diǎn).連接AD,BC,點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1,求證:OH=AD,OH⊥AD;
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時,⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)任意三個連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個數(shù)的平方差是4的倍數(shù);
驗(yàn)證:(1) 的結(jié)果是4的幾倍?
(2)設(shè)三個連續(xù)的整數(shù)中間的一個為n,計算最大數(shù)與最小數(shù)這兩個數(shù)的平方差,并說明它是4的倍數(shù);
延伸:說明任意三個連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個數(shù)的平方差是8的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形的對角線所成的角之一是65°,則對角線與各邊所成的角度是( 。
A. 57.5° B. 32.5° C. 57.5°,23.5° D. 57.5°,32.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動畫的學(xué)生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平行四邊形ABCD和平行四邊形CDEF有公共邊CD,邊AB和EF在同一條直線上,AC⊥CD且AC=AF,過點(diǎn)A作AH⊥BC交CF于點(diǎn)G,交BC于點(diǎn)H,連接EG.
(1)若AE=2,CD=5,則△BCF的面積為 ;△BCF的周長為 ;
(2)求證:BC=AG+EG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com