分析 如圖作等邊三角形BDE,連結(jié)AE,先證明△ABE≌△ADE,再證明△BAE≌△BCD得到AB=BC由此即可證明.
解答 證明:如圖作等邊三角形BDE,連結(jié)AE.
∵∠ABD=∠ADB=15°,
∴AB=AD
∵EB=ED,
在△ABE和△ADE中,
$\left\{\begin{array}{l}{AE=AE}\\{EB=ED}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADE(SSS),
∴∠AEB=∠AED=30°,
∵∠BDC=30°,
∴∠AEB=∠BDC,
∵∠EBD=60°,∠ABD=15°,
∴∠EBA=45°=∠CBD
在△BAE和△BCD中,
$\left\{\begin{array}{l}{∠BEA=∠BDC}\\{BE=DB}\\{∠EBA=∠CBD}\end{array}\right.$
∴△BAE≌△BCD(ASA)
∴BA=BC
∵∠ABC=∠ABD+∠CBD
=15°+45°
=60°
∴△ABC是等邊三角形.
點(diǎn)評(píng) 本題考查等邊三角形的判定、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,題目有點(diǎn)難度,記住作等邊三角形也是常用輔助線,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com