精英家教網 > 初中數學 > 題目詳情

【題目】已知ABAC,AD為∠BAC的角平分線,DE、F為∠BAC的角平分線上的若干點.如圖1,連接BD、CD,圖中有1對全等三角形;如圖2,連接BD、CD、BECE,圖中有3對全等三角形;如圖3,連接BD、CD、BE、CEBF、CF,圖中有6對全等三角形;依此規(guī)律,第n個圖形中有_____對全等三角形.

【答案】

【解析】

根據圖形得出當有1D時,有1對全等三角形;當有2D、E時,有3對全等三角形;當有3DE、F時,有6對全等三角形;根據以上結果得出當有n個點時,圖中有個全等三角形即可.

解:當有1D時,有1對全等三角形;

當有2D、E時,有3對全等三角形;

當有3D、EF時,有6對全等三角形;

當有4點時,有10個全等三角形;

當有n個點時,圖中有個全等三角形.

故答案為:.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系上有個點A(1,0),點A1次向上跳動1個單位至點A1(1,1),緊接著第2次向右跳動2個單位至點A2(1,1),第3次向上跳動1個單位至點A3,第4次向左跳動3個單位至點A4,第5次又向上跳動1個單位至點A5,第6次向右跳動4個單位至點A6,……,依此規(guī)律跳動下去,點A2019次跳動至點A2019的坐標是____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點O是對角線AC的中點,點E在邊AB上,連接DE,取DE的中點F,連接EO并延長交CD于點G.若BE=3CG,OF=2,則線段AE的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形的頂點在坐標原點,頂點、分別在、軸的正半軸上,頂點在反比例函數為常數,,)的圖象上,將矩形繞點按逆時針方向旋轉得到矩形,若點的對應點恰好落在此反比例函數圖象上,則的值是__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正方形的邊長為4,、分別為直線、上兩點.

1)如圖1,點上,點上,,求證:.

2)如圖2,點延長線上一點,作的延長線于,作,求的長.

3)如圖3,點的延長線上,,點上,,直線,連接,設的面積為,直接寫出的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程

1 3x-2(x-1)= 2- 3(5-2x)

2

3

4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(問題情境)一節(jié)數學課后,老師布置了一道課后練習題:

如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°CD⊥AB于點D,點E、F分別在ABC上,∠1=∠2,FG⊥AB于點G,求證:△CDE≌△EGF

1)閱讀理解,完成解答

本題證明的思路可用下列框圖表示:

根據上述思路,請你完整地書寫這道練習題的證明過程;

2)特殊位置,證明結論

CE平分∠ACD,其余條件不變,求證:AE=BF

3)知識遷移,探究發(fā)現

如圖,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,若點EDB的中點,點F在直線CB上且滿足EC=EF,請直接寫出AEBF的數量關系.(不必寫解答過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線軸交于點.

(1)求拋物線的函數表達式;

(2)設直線與拋物線的對稱軸的交點為是拋物線上位于對稱軸右側的一點,若,且的面積相等,求點的坐標;

(3)若在軸上有且只有一點,使,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016廣東省茂名市)如圖,一次函數y=x+b的圖象與反比例函數k為常數,k≠0)的圖象交于點A(﹣1,4)和點Ba,1).

(1)求反比例函數的表達式和ab的值;

(2)若A、O兩點關于直線l對稱,請連接AO,并求出直線l與線段AO的交點坐標.

查看答案和解析>>

同步練習冊答案