【題目】如圖,平行四邊形ABCD中,E為AD的中點,已知△DEF的面積為2,則平行四邊形ABCD的面積是_____.
【答案】24
【解析】
由于四邊形ABCD是平行四邊形,那么AD∥BC,AD=BC,根據(jù)平行線分線段成比例定理的推論可得△DEF∽△BCF,再根據(jù)E是AD中點,易求出相似比,從而可求△BCF的面積,再利用△BCF與△DEF是同高的三角形,則兩個三角形面積比等于它們的底之比,從而易求△DCF的面積,進而可求ABCD的面積.
解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∴S△DEF:S△BCF=()2,
又∵E是AD中點,
∴DE=AD=BC,
∴DE:BC=DF:BF=1:2,
∴S△DEF:S△BCF=1:4,
∴S△BCF=8,
又∵DF:BF=1:2,
∴S△DCF=4,
∴SABCD=2(S△DCF+S△BCF)=24.
故答案為:24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,、都是等腰三角形,且,,,、相交于點,點、分別是線段、的中點.以下4個結(jié)論:①;②;③是等邊三角形;④連,則平分以上四個結(jié)論中正確的是:______.(把所有正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市扶貧辦在精準(zhǔn)扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:
產(chǎn)品名稱 | 核桃 | 花椒 | 甘藍 |
每輛汽車運載量(噸) | 10 | 6 | 4 |
每噸土特產(chǎn)利潤(萬元) | 0.7 | 0.8 | 0.5 |
若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設(shè)30輛車裝運的三種產(chǎn)品的總利潤為y萬元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利潤最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2)
(1)求拋物線的表達式;
(2)拋物線的對稱軸與x軸交于點M,點D與點C關(guān)于點M對稱,試問在該拋物線的對稱軸上是否存在點P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知,點P在OA上,且,點P關(guān)于直線OB的對稱點是Q,則________.
(2)已知,點P在的內(nèi)部,,點和點P關(guān)于OA對稱,點和點P關(guān)于OB對稱,則、O、三點構(gòu)成的三角形是________三角形,其周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DE⊥BC,垂足為D.
(1)請你寫出圖中所有的等腰三角形;
(2)請你判斷AD與BE垂直嗎?并說明理由.
(3)如果BC=10,求AB+AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年是“五四”運動周年,為進一步弘揚“愛國、進步、民主、科學(xué)”的五四精神,引領(lǐng)廣大團員青年堅定理想信念,某市團委、少先隊共同舉辦紀(jì)念“五四運動周年”讀書演講比賽,甲同學(xué)代表學(xué)校參加演講比賽,位評委給該同學(xué)的打分(單位:分)情況如下表:
評委 | 評委1 | 評委2 | 評委3 | 評委4 | 評委5 | 評委6 | 評委7 |
打分 |
(1)直接寫出該同學(xué)所得分?jǐn)?shù)的眾數(shù)與中位數(shù);
(2)計算該同學(xué)所得分?jǐn)?shù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com