【題目】如圖,△ABC中,CDAB邊上的高,AD8CD4,BD3.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動(dòng),速度為1個(gè)單位/秒,運(yùn)動(dòng)時(shí)間為t秒.

1)當(dāng)t為何值時(shí),△PDC≌△BDC

2)當(dāng)t為何值時(shí),△PBC是等腰三角形?

【答案】1t的值為511;(2t

【解析】

(1)由于△PDC≌△BDC,可得PD=BD,分PDBD3或點(diǎn)PB重合,兩種情況構(gòu)建方程即可得出結(jié)論:

(2)PDBD3BCBP5, 或CPBP時(shí),可三種情況討論,由等腰三角形的性質(zhì)和勾股定理可求解.

解:(1)∵△PDC≌△BDC,

PDBD3,即8t3,解得t5(秒);

或點(diǎn)PB重合,此時(shí)t11,

綜上所述,滿足條件的t的值為511

2)∵CD4,BD3,CDAB

當(dāng)BCCP時(shí),且CDAB,

PDBD3,可得8t3,解得t5(秒);

當(dāng)BCBP5,可得11t5,解得t6(秒);

當(dāng)CPBP時(shí),可得CP2PD2+CD2

BP2=(BP32+16,

t

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖在直角坐標(biāo)系中,點(diǎn)Ay軸上,BCx軸于點(diǎn)C,點(diǎn)A關(guān)于直線OB的對(duì)稱點(diǎn)D恰好在BC上,點(diǎn)E與點(diǎn)O關(guān)于直線BC對(duì)稱,∠OBC=35°,則∠OED的度數(shù)為(  )

A.10°B.20°C.30°D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=ECD=90°,點(diǎn)DAB邊上的一點(diǎn).

1)求證:△BCD≌△ACE;

2)若AD=3,BD=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題的是( 。

A.在△ABC中,若∠B+C=∠A,則△ABC是直角三角形

B.在△ABC中,若a2=(b+c)(bc),則△ABC是直角三角形

C.在△ABC中,若∠A:∠B:∠C123,則△ABC是直角三角形

D.在△ABC中,若a32,b42,c52,則△ABC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C90°,AC3,BC4,∠ABC和∠BAC的角平分線的交點(diǎn)是點(diǎn)D,則△ABD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC=12厘米,BC=9厘米,點(diǎn)DAB的中點(diǎn),如果點(diǎn)P在線段BC上以v厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng)。若點(diǎn)Q的運(yùn)動(dòng)速度為3厘米/秒,則當(dāng)BPDCQP全等時(shí),v的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廊橋是我國(guó)古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90° ,AC=BC=4 點(diǎn)D是邊AB上的動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)A、B不重合),過(guò)點(diǎn)DDEAB交射線BC于點(diǎn)E,聯(lián)結(jié)AE,點(diǎn)FAE的中點(diǎn),過(guò)點(diǎn)DF作直線,交AC于點(diǎn)G,聯(lián)結(jié)CF、CD.

(1)當(dāng)點(diǎn)E在邊BC上,設(shè)DB=, CE=

①寫(xiě)出關(guān)于的函數(shù)關(guān)系式及定義域;

②判斷△CDF的形狀,并給出證明;

(2)如果AE=,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸、軸分別交于點(diǎn)和點(diǎn),點(diǎn)分別為線段的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn),當(dāng)最小時(shí),點(diǎn)的坐標(biāo)為_________________

查看答案和解析>>

同步練習(xí)冊(cè)答案