【題目】如圖,直線軸、軸分別交于點和點,點分別為線段的中點,點上一動點,當最小時,點的坐標為_________________。

【答案】,0).

【解析】

根據(jù)一次函數(shù)解析式求出點A、B的坐標,再由中點坐標公式求出點CD的坐標,根據(jù)對稱的性質(zhì)找出點D′的坐標,結(jié)合點C、D′的坐標求出直線CD′的解析式,令y=0即可求出x的值,從而得出點P的坐標.

解:作點D關于x軸的對稱點D′,連接CD′x軸于點P,此時PC+PD值最小,如圖所示.

x=0時,

∴點B的坐標為(0,2);

y=0時,,解得:x=-3,

∴點A的坐標為(-3,0).

∵點CD分別為線段AB、OB的中點,

∴點C,1),點D01).

∵點D′和點D關于x軸對稱,

∴點D′的坐標為(0,-1).

設直線CD′的解析式為y=kx+b,

∵直線CD′過點C,1),D′0,-1),

∴有

解得:,

∴直線CD′的解析式為

y=0時,則,

解得:

∴點P的坐標為(0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CDAB邊上的高,AD8,CD4BD3.動點P從點A出發(fā),沿射線AB運動,速度為1個單位/秒,運動時間為t秒.

1)當t為何值時,△PDC≌△BDC;

2)當t為何值時,△PBC是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C90°,BD平分∠ABCAC于點D,DE垂直平分線段AB

1)求∠A

2)若DE2cm,BD4cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小方格的邊長為1,已知點A(2,2),把點A先向左平移4個單位,再向下平移2個單位到達點B;把點B先向右平移2個單位,再向下平移4個單位到達點C.

(1)在圖中畫出△ABC,并直接寫出B,C兩點的坐標:B( ),C( ).

(2)求△ABC的面積.

(3)判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有個點,點1次向上跳動1個單位至點,緊接著第2次向右跳動2個單位至點,第3次向上跳動1個單位,第4次向左跳動3個單位,第5次又向上跳動1個單位,第6次向右跳動4個單位,,依次規(guī)律跳動下去,點2019次跳動至點的坐標是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答.

(1)把ABC繞點P旋轉(zhuǎn)180°得A′B′C′.

(2)把ABC向右平移7個單位得A″B″C″.

(3)A′B′C′與A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點EBC邊上一點,∠DEF=45°且角的兩邊分別與邊AB,射線CA交于點P,Q.

(1)如圖2,若點EBC中點,將∠DEF繞著點E逆時針旋轉(zhuǎn),DE與邊AB交于點P,EFCA的延長線交于點Q.設BPx,CQy,試求yx的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)如圖3,點E在邊BC上沿BC的方向運動(不與B,C重合),且DE始終經(jīng)過點A,EF與邊AC交于Q點.探究:在∠DEF運動過程中,△AEQ能否構(gòu)成等腰三角形,若能,求出BE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的一個角與三角形的一個角重合,然后它的對角頂點在這個重合角的對邊上,這個菱形稱為這個三角形的親密菱形,如圖,在△CFE中,CF=6,CE=12,FCE=45°,以點C為圓心,以任意長為半徑作AD,再分別以點A和點D為圓心,大于AD長為半徑做弧,交EF于點B,ABCD.

(1)求證:四邊形ACDB為△CFE的親密菱形;

(2)求四邊形ACDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,點P是∠AOB的平分線OC上的一點,我們可以分別OA、OB在截取點M、N,使OM=ON,連結(jié)PM、PN,就可得到.

1)請你在圖①中,根據(jù)題意,畫出上面敘述的全等三角形,并加以證明.

2)請你參考(1)中的作全等三角形的方法,解答下列問題:

(Ⅰ)如圖②,在△ABC中,∠ACB是直角,B=60°,AD、CE分別是∠BAC、∠BCA的平分線,ADCE相交于點F.請你判斷并寫出FEFD之間的數(shù)量關系.

(Ⅱ)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,請問,你在(Ⅰ)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案