【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn).
(1)求證:△BCD≌△ACE;
(2)若AD=3,BD=4,求DE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)5
【解析】
(1)根據(jù)同角的余角相等得到∠ACE=∠BCD,又夾這個(gè)角的兩邊分別是兩等腰直角三角形的腰,利用SAS即可證明;
(2)根據(jù)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等可以得到AE=BD,∠EAC=∠B=45°,所以△AED是直角三角形,利用勾股定理即可求出DE長(zhǎng)度.
(1)證明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,EC=DC.
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA,
∠ACB=∠ECD=90°,
∴∠ACE=∠BCD.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS).
(2)由(1)得,∠CAE=∠B=45°,AE=BD=4,
又∠BAC=45°
∴∠EAD=∠EAC+∠BAC=90°,
即△EAD是直角三角形,
∴
∵AD=3
∴DE==5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)在的內(nèi)部,,在、上分別取點(diǎn)、,使的周長(zhǎng)最短,則周長(zhǎng)的最小值為( )
A.4B.8C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程①,②,③,④(為實(shí)數(shù)),⑤,⑥其中一定是一元二次方程的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形中,為正方形的外角的角平分線,點(diǎn)在線段上,過(guò)點(diǎn)作于點(diǎn),連接,過(guò)點(diǎn)作于點(diǎn),交射線于點(diǎn).
()如圖1,若點(diǎn)與點(diǎn)重合.
①依題意補(bǔ)全圖1.
②判斷與的數(shù)量關(guān)系并加以證明.
()如圖2,若點(diǎn)恰好在線段上,正方形的邊長(zhǎng)為,請(qǐng)寫出求長(zhǎng)的思路(可以不寫出計(jì)算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點(diǎn),DM與EN相交于點(diǎn)F.
(1)若△CMN的周長(zhǎng)為15cm,求AB的長(zhǎng);
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某長(zhǎng)途汽車客運(yùn)公司規(guī)定旅客可以免費(fèi)攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過(guò)規(guī)定時(shí),需付的行李費(fèi)y(元)與行李質(zhì)量x(kg)之間的函數(shù)表達(dá)式為,這個(gè)函數(shù)的圖像如圖所示,求:
(1)k和b的值;
(2)旅客最多可免費(fèi)攜帶行李的質(zhì)量;
(3)行李費(fèi)為4~15元時(shí),旅客攜帶行李的質(zhì)量為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問(wèn)題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD為AB邊上的高,AD=8,CD=4,BD=3.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動(dòng),速度為1個(gè)單位/秒,運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),△PDC≌△BDC;
(2)當(dāng)t為何值時(shí),△PBC是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于點(diǎn)D,DE垂直平分線段AB.
(1)求∠A;
(2)若DE=2cm,BD=4cm,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com