【題目】若a既不是正數(shù)也不是負數(shù)的整數(shù),那么a和5的差是。

【答案】-5
【解析】明確a是0,那么a—5=-5
【考點精析】根據(jù)題目的已知條件,利用有理數(shù)的減法的相關知識可以得到問題的答案,需要掌握有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀材料:

教材中的問題,如圖1,把5個邊長為1的小正方形組成的十字形紙板剪開,使剪成的若干塊能夠拼成一個大正方形,小明的思考:因為剪拼前后的圖形面積相等,且5個小正方形的總面積為5,所以拼成的大正方形邊長為 ,故沿虛線AB剪開可拼成大正方形的一邊,請在圖1中用虛線補全剪拼示意圖.

(2)類比解決:

如圖2,已知邊長為2的正三角形紙板ABC,沿中位線DE剪掉ADE,請把紙板剩下的部分DBCE剪開,使剪成的若干塊能夠拼成一個新的正三角形.

①拼成的正三角形邊長為 ;

②在圖2中用虛線畫出一種剪拼示意圖.

(3)靈活運用:

如圖3,把一邊長為60cm的正方形彩紙剪開,用剪成的若干塊拼成一個軸對稱的風箏,其中BCD=90°,延長DC、BC分別與AB、AD交于點E、F,點E、F分別為AB、AD的中點,在線段AC和EF處用輕質(zhì)鋼絲做成十字形風箏龍骨,在圖3的正方形中畫出一種剪拼示意圖,并求出相應輕質(zhì)鋼絲的總長度.(說明:題中的拼接都是不重疊無縫隙無剩余)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)22+(﹣4)+(﹣2)+4
(2)(﹣ +1 )×(﹣24)
(3)3﹣6÷(﹣2)×|﹣ |
(4)2a﹣(3b﹣a)+b
(5)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2
(6)(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yx26x+11的頂點坐標是( 。

A.32B.3,﹣2C.(﹣32D.(﹣3,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】挑戰(zhàn)自我!
下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用根火柴棒,
擺第②個圖案用根火柴棒,
擺第③個圖案用根火柴棒.
(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?
(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展旅游經(jīng)濟,我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價為50元/人,非節(jié)假日打a折售票,節(jié)假日按團隊人數(shù)分段定價售票,即m人以下(含m人)的團隊按原價售票;超過m人的團隊,其中m人仍按原價售票,超過m人部分 的游客打b折售票.設某旅游團人數(shù)為x人,非節(jié)假日購票款為y1(元),節(jié)假日購票款為y2(元).y1與y2之間的函數(shù)圖象如圖所示.

(1)觀察圖象求a,b,m的值
(2)直接寫出y1 , y2與x之間的函數(shù)關系式;
(3)某旅行社導游王娜于5月1日帶A團,5月20日(非節(jié)假日)帶B團都到該景區(qū)旅游,共付門票款1900元,A,B兩個團隊合計50人,求A,B兩個團隊各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字的個數(shù)統(tǒng)計結(jié)果如表:某同學分析表后得出如下結(jié)論:

班級

人數(shù)

中位數(shù)

方差

平均字數(shù)

55

149

191

135

55

151

110

135

①甲、乙兩班學生成績平均水平相同;

②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);

③甲班成績的波動比乙班。鲜鼋Y(jié)論正確的是( 。

A. ①②③ B. ①② C. ①③ D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣(x32+2的對稱軸為( )

A.x3B.x=﹣3C.x2D.x=﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

同步練習冊答案