【題目】如圖1,△ABC中,CA=CB,點(diǎn)O在高CH上,OD⊥CA于點(diǎn)D,OE⊥CB于點(diǎn)E,以O(shè)為圓心,OD為半徑作⊙O.
(1)求證:⊙O與CB相切于點(diǎn)E;
(2)如圖2,若⊙O 過點(diǎn)H,且AC=5,AB=6,連結(jié)EH,求△BHE的面積.
【答案】
(1)證明:∵CA=CB,點(diǎn)O在高CH上,
∴∠ACH=∠BCH,
∵OD⊥CA,OE⊥CB,
∴OE=OD,
∴圓O與CB相切于點(diǎn)E
(2)解:∵CA=CB,CH是高,
∴AH=BH= AB=3,
∴CH= =4,
∵點(diǎn)O在高CH上,圓O過點(diǎn)H,
∴圓O與AB相切于H點(diǎn),
由(1)得圓O與CB相切于點(diǎn)E,
∴BE=BH=3,
如圖,過E作EF⊥AB,則EF∥CH,
∴△BEF∽△BCH,
∴ = ,即 = ,
解得:EF= ,
∴S△BHE= BHEF= ×3× =
【解析】(1)由CA=CB,且CH垂直于AB,利用三線合一得到CH為角平分線,再由OD垂直于AC,OE垂直于CB,利用角平分線定理得到OE=OD,利用切線的判定方法即可得證;(2)由CA=CB,CH為高,利用三線合一得到AH=BH,在直角三角形ACH中,利用勾股定理求出CH的長,由圓O過H,CH垂直于AB,得到圓O與AB相切,由(1)得到圓O與CB相切,利用切線長定理得到BE=BH,如圖所示,過E作EF垂直于AB,得到EF與CH平行,得出△BEF與△BCH相似,由相似得比例,求出EF的長,由BH與EF的長,利用三角形面積公式即可求出△BEH的面積.
【考點(diǎn)精析】掌握三角形的內(nèi)切圓與內(nèi)心是解答本題的根本,需要知道三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1 , A2依次在y=(x>0)的圖象上,點(diǎn)B1 , B2依次在x軸的正半軸上.若△A1OB1 , △A2B1B2均為等邊三角形,則點(diǎn)B2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn)且∠BOD=60°,過點(diǎn)D作⊙O的切線CD交AB的延長線于點(diǎn)C,E為的中點(diǎn),連接DE,EB.
(1)求證:四邊形BCDE是平行四邊形;
(2)已知圖中陰影部分面積為6π,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育館計(jì)劃從一家體育用品商店一次性購買若干個(gè)氣排球和籃球(每個(gè)氣排球的價(jià)格都相同,每個(gè)籃球的價(jià)格都相同).經(jīng)洽談,購買1個(gè)氣排球和2個(gè)籃球共需210元;購買2個(gè)氣排球和3個(gè)籃球共需340元.
(1)每個(gè)氣排球和每個(gè)籃球的價(jià)格各是多少元?
(2)該體育館決定從這家體育用品商店一次性購買氣排球和籃球共50個(gè),總費(fèi)用不超過3200元,且購買氣排球的個(gè)數(shù)少于30個(gè),應(yīng)選擇哪種購買方案可使總費(fèi)用最低?最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當(dāng)x>1時(shí),y隨著x的增大而增大.
正確的說法有 . (請寫出所有正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在1800米長的直線道路上跑步,甲、乙兩人同起點(diǎn)、同方向出發(fā),并分別以不同的速度勻速前進(jìn).已知,甲出發(fā)30秒后,乙出發(fā),乙到終點(diǎn)后立即返回,并以原來的速度前進(jìn),最后與甲相遇,此時(shí)跑步結(jié)束.如圖,y(米)表示甲、乙兩人之間的距離,t(秒)表示甲出發(fā)的時(shí)間,圖中折線及數(shù)據(jù)表示整個(gè)跑步過程中y與t函數(shù)關(guān)系.那么,乙到終點(diǎn)后秒與甲相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣ x2+ x+2的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,連接BC,過點(diǎn)A作AD∥BC交拋物線的對稱軸于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)如圖2,點(diǎn)P是拋物線在第一象限內(nèi)的一點(diǎn),作PQ⊥BC于Q,當(dāng)PQ的長度最大時(shí),在線段BC上找一點(diǎn)M(不與點(diǎn)B、點(diǎn)C重合),使PM+ BM的值最小,求點(diǎn)M的坐標(biāo)及PM+ BM的最小值;
(3)拋物線的頂點(diǎn)為點(diǎn)E,平移拋物線,使拋物線的頂點(diǎn)E在直線AE上移動,點(diǎn)A,E平移后的對應(yīng)點(diǎn)分別為點(diǎn)A′、E′.在平面內(nèi)有一動點(diǎn)F,當(dāng)以點(diǎn)A′、E′、B、F為頂點(diǎn)的四邊形為菱形時(shí),求出點(diǎn)A′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時(shí)間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y= 的一部分,請根據(jù)圖中信息解答下列問題:
(1)求0到2小時(shí)期間y隨x的函數(shù)解析式;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚內(nèi)溫度不低于15℃的時(shí)間有多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com