【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

【答案】
(1)證明:∵四邊形ABCD是矩形,

∴AB∥DC、AD∥BC,

∴∠ABD=∠CDB,

∵BE平分∠ABD、DF平分∠BDC,

∴∠EBD= ∠ABD,∠FDB= ∠BDC,

∴∠EBD=∠FDB,

∴BE∥DF,

又∵AD∥BC,

∴四邊形BEDF是平行四邊形


(2)證明:當(dāng)∠ABE=30°時,四邊形BEDF是菱形,

∵BE平分∠ABD,

∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,

∵四邊形ABCD是矩形,

∴∠A=90°,

∴∠EDB=90°﹣∠ABD=30°,

∴∠EDB=∠EBD=30°,

∴EB=ED,

又∵四邊形BEDF是平行四邊形,

∴四邊形BEDF是菱形


【解析】(1)由矩形可得∠ABD=∠CDB,結(jié)合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根據(jù)AD∥BC即可得證;(2)當(dāng)∠ABE=30°時,四邊形BEDF是菱形,由角平分線知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,結(jié)合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得證.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定與性質(zhì)和菱形的判定方法的相關(guān)知識點(diǎn),需要掌握若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,CA=CB,點(diǎn)O在高CH上,OD⊥CA于點(diǎn)D,OE⊥CB于點(diǎn)E,以O(shè)為圓心,OD為半徑作⊙O.

(1)求證:⊙O與CB相切于點(diǎn)E;
(2)如圖2,若⊙O 過點(diǎn)H,且AC=5,AB=6,連結(jié)EH,求△BHE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直線旋轉(zhuǎn)一周得到一個幾何體,則這個幾何體的側(cè)面積為(
A.60πcm2
B.65πcm2
C.120πcm2
D.130πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,AD∥BC,以點(diǎn)B為圓心,BA為半徑的圓弧與BC交于點(diǎn)E,四邊形AECD是平行四邊形,AB=6,則扇形(圖中陰影部分)的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,⊙C經(jīng)過坐標(biāo)原點(diǎn)O,且與x軸,y軸分別相交于M(4,0),N(0,3)兩點(diǎn).已知拋物線開口向上,與⊙C交于N,H,P三點(diǎn),P為拋物線的頂點(diǎn),拋物線的對稱軸經(jīng)過點(diǎn)C且垂直x軸于點(diǎn)D.

(1)求線段CD的長及頂點(diǎn)P的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式;
(3)設(shè)拋物線交x軸于A,B兩點(diǎn),在拋物線上是否存在點(diǎn)Q,使得S四邊形OPMN=8SQAB , 且△QAB∽△OBN成立?若存在,請求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y= x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1 , △BCE的面積為S2 , 求 的最大值;
②過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81, ≈1.41, ≈1.73, ≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A>∠B.
(1)作邊AB的垂直平分線DE,與AB,BC分別相交于點(diǎn)D,E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,連接AE,若∠B=50°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則 的值為; 的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案