【題目】閱讀下面的材料:
小明同學(xué)遇到這樣一個(gè)問(wèn)題,如圖1,AB=AE,∠ABC=∠EAD,AD=mAC,點(diǎn)P在線段BC上,∠ADE=∠ADP+∠ACB,求的值.
小明研究發(fā)現(xiàn),作∠BAM=∠AED,交BC于點(diǎn)M,通過(guò)構(gòu)造全等三角形,將線段BC轉(zhuǎn)化為用含AD的式子表示出來(lái),從而求得的值(如圖2).
(1)小明構(gòu)造的全等三角形是:_________≌________;
(2)請(qǐng)你將小明的研究過(guò)程補(bǔ)充完整,并求出的值.
(3)參考小明思考問(wèn)題的方法,解決問(wèn)題:
如圖3,若將原題中“AB=AE”改為“AB=kAE”,“點(diǎn)P在線段BC上”改為“點(diǎn)P在線段BC的延長(zhǎng)線上”,其它條件不變,若∠ACB=2α,求:的值(結(jié)果請(qǐng)用含α,k,m的式子表示).
【答案】(1);(2);(3).
【解析】
(1)根據(jù)已知條件直接猜想得出結(jié)果;
(2)過(guò)點(diǎn)作交于點(diǎn),易證,再根據(jù)結(jié)合已知條件得出結(jié)果;
(3)過(guò)點(diǎn)作交于點(diǎn),過(guò)點(diǎn)作,得出,根據(jù)相似三角形的性質(zhì)及已知條件得出,進(jìn)而求解.
(1)解:;
(2)過(guò)點(diǎn)作交于點(diǎn).
在中和,,,,
∴.
∴,.
∴.
∵,,
∴.
∵.
∵,
∴.
∴.
∴.
(3)解:過(guò)點(diǎn)作交于點(diǎn).
在中和,,,
∴.
∴,.
∴,.
∵,
∴.
∵,,
∴.
∴.
過(guò)點(diǎn)作.
∴,,.
在中,,
∴.
∴
.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,0),B兩點(diǎn),與y軸交于C(0,3),對(duì)稱軸為直線x=2.
(1)請(qǐng)直接寫(xiě)出該拋物線的解析式;
(2)設(shè)直線l與拋物線的對(duì)稱軸的交點(diǎn)為F,在對(duì)稱軸右側(cè)的拋物線上有一點(diǎn)G,若,且S△BAG=6,求點(diǎn)G的坐標(biāo);
(3)若在直線上有且只有一點(diǎn)P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l和雙曲線y=(k>0)交于A、B兩點(diǎn),P是線段AB上的點(diǎn)(不與A、B重合),過(guò)點(diǎn)A、B、P分別向x軸作垂線,垂足分別為C、D、E,連接OA、OB、OP,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3,則( )
A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)?shù)貢r(shí)間2019年4月15日下午,法國(guó)巴黎圣母院發(fā)生火災(zāi),大火燒毀了巴黎圣母院后塔的塔頂.燒毀前,為測(cè)量此塔頂的高度,在地面選取了與塔底共線的兩點(diǎn)、,、在的同側(cè),在處測(cè)量塔頂的仰角為27°,在處測(cè)量塔頂的仰角為45°,到的距離是89.5米.設(shè)的長(zhǎng)為米,則下列關(guān)系式正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,當(dāng)線段AB與坐標(biāo)軸不垂直時(shí),以線段AB為斜邊作Rt△ABC,且邊BC⊥x軸,則稱AC+BC的值為線段AB的直角距離,記作L(AB);當(dāng)線段AB與坐標(biāo)軸垂直時(shí),線段AB的直角距離不存在.
(1)在平面直角坐標(biāo)系中,A(1,4),B(4,2),求L(AB).
(2)在平面直角坐標(biāo)系中,點(diǎn)A與坐標(biāo)原點(diǎn)重合,點(diǎn)B(x,y),且L(AB)=2.
①當(dāng)點(diǎn)B(x,y)在第一象限時(shí),易知AC=x,BC=y.由AC+BC=L(AB),可得y與x之間的函數(shù)關(guān)系式為 ,其中x的取值范圍是 ,在圖②中畫(huà)出這個(gè)函數(shù)的圖象.
②請(qǐng)模仿①的思考過(guò)程,分別探究點(diǎn)B在其它象限的情形,仍然在圖②中分別畫(huà)出點(diǎn)B在二、三、四象限時(shí),y與x的函數(shù)圖象.(不要求寫(xiě)出探究過(guò)程)
(3)在平面直角坐標(biāo)系中,點(diǎn)A(1,1),在拋物線y=a(x﹣h)2+5上存在點(diǎn)B,使得2≤L(AB)≤4.
①當(dāng)a=﹣時(shí),直接寫(xiě)出h的取值范圍.
②當(dāng)h=0,且△ABC是等腰直角三角形時(shí),直接寫(xiě)出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有紅、黃兩個(gè)布袋,紅布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字2和4.黃布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣2,﹣4和﹣6.小賢先從紅布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)狞S布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)M的一個(gè)坐標(biāo)為(x.y)
(1)用列表或畫(huà)樹(shù)狀圖的方法寫(xiě)出點(diǎn)M的所有可能坐標(biāo);
(2)求點(diǎn)M落在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù):和二次函數(shù):圖象的頂點(diǎn)分別為、,與軸分別相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)和、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),
(1)函數(shù)的頂點(diǎn)坐標(biāo)為______;當(dāng)二次函數(shù),的值同時(shí)隨著的增大而增大時(shí),則的取值范圍是_______;
(2)判斷四邊形的形狀(直接寫(xiě)出,不必證明);
(3)拋物線,均會(huì)分別經(jīng)過(guò)某些定點(diǎn);
①求所有定點(diǎn)的坐標(biāo);
②若拋物線位置固定不變,通過(guò)平移拋物線的位置使這些定點(diǎn)組成的圖形為菱形,則拋物線應(yīng)平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,是對(duì)角線與的交點(diǎn),是邊上的動(dòng)點(diǎn)(點(diǎn)不與重合),過(guò)點(diǎn)作垂直交于點(diǎn),連結(jié).下列四個(gè)結(jié)論:①;②;③;④若,則的最小值是1.其中正確結(jié)論是( )
A.①②③B.①③④C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com