分析 (1)如果延長BA交EF于點G,那么BG⊥EF,∠CAE=180°-∠BAC-∠EAG,∠BAC的度數(shù)以及確定,只要求出∠GAE即可.直角三角形GAE中∠E的度數(shù)已知,那么∠EAG的度數(shù)就能求出來了,∠CAE便可求出;
(2)求樹折斷前的高度,就是求AC和CD的長,如果過點A作AH⊥CD,垂足為H.有∠CDA=60°,通過構(gòu)筑的直角三角形AHD和ACH便可求出AD、CD的值.
解答 解:(1)延長BA交EF于點G.
在Rt△AGE中,∠E=24°,
∴∠GAE=66°.
又∵∠BAC=39°,
∴∠CAE=180°-66°-39°=75°.
(2)過點A作AH⊥CD,垂足為H.
在△ADH中,∠ADC=60°,AD=4,cos∠ADC=$\frac{DH}{AD}$,∴DH=2.
sin∠ADC=$\frac{AH}{AD}$,∴AH=2$\sqrt{3}$.
在Rt△ACH中,
∵∠C=180°-75°-60°=45°,CH=AH=2$\sqrt{3}$,
∴AC=2$\sqrt{6}$,CH=AH=2$\sqrt{3}$.
∴AB=AC+CD=2$\sqrt{6}$+2$\sqrt{3}$+2≈10(米).
答:這棵大樹折斷前高約10米.
點評 本題是將實際問題轉(zhuǎn)化為直角三角形中的數(shù)學問題,可通過作輔助線構(gòu)造直角三角形,再把條件和問題轉(zhuǎn)化到這個直角三角形中,使問題解決.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com