【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過,兩點(diǎn).繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到,點(diǎn)在拋物線上.

1)求該拋物線的表達(dá)式;

2)已知點(diǎn)軸上(點(diǎn)不與點(diǎn)重合),連接,若相似,試求點(diǎn)的坐標(biāo)。

【答案】1;(2)點(diǎn)的坐標(biāo)為.

【解析】

1)由旋轉(zhuǎn)的性質(zhì)求出D的坐標(biāo),再由待定系數(shù)法可得出函數(shù)關(guān)系式;

2)設(shè)點(diǎn)M的坐標(biāo)為(0,m),由ΔAOB與ΔAOM相似,且∠AOB=AOM=90°,分兩種情況討論即可.

1)由旋轉(zhuǎn)可得OD=OB=4,則D-40).由拋物線經(jīng)過B0,4),可設(shè)y=ax2+bx+4,代入A2,0),D-40)可得:,解得:

因此該拋物線的表達(dá)式為

2)由題可知OA=2,OB=4,設(shè)點(diǎn)M的坐標(biāo)為(0,m),如圖.

∵ΔAOB與ΔAOM相似,且∠AOB=AOM=90°,∴分兩種情況討論:

①若,即,∴|m|=4,即m=±4

∵點(diǎn)M不與點(diǎn)C重合,∴m=-4,此時(shí)點(diǎn)M的坐標(biāo)為M1 0,-4).

②若,即,∴|m|=1,即m=±1

此時(shí)點(diǎn)M的坐標(biāo)為M2 0,-1)或M3 01).

綜上所述:點(diǎn)M的坐標(biāo)為M1 0,-4)或M2 0,-1)或M3 01).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)背景

當(dāng)a0x0時(shí),因?yàn)椋?/span>20,所以x﹣2+0,從而x+(當(dāng)x=時(shí)取等號(hào)).

設(shè)函數(shù)y=x+(a0,x0),由上述結(jié)論可知:當(dāng)x=時(shí),該函數(shù)有最小值為2

應(yīng)用舉例

已知函數(shù)為y1=x(x0)與函數(shù)y2=(x0),則當(dāng)x==2時(shí),y1+y2=x+有最小值為2=4.

解決問題

(1)已知函數(shù)為y1=x+3(x﹣3)與函數(shù)y2=(x+3)2+9(x﹣3),當(dāng)x取何值時(shí),有最小值?最小值是多少?

(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時(shí),該設(shè)備平均每天的租貨使用成本最低?最低是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD 中,對(duì)角線ACBD交于點(diǎn)O,以 ADOD為鄰邊作平行四邊形ADOE,連接BE.

(1) 求證:四邊形AOBE是菱形;

(2) 若∠EAO+DCO=180°,DC=2,求四邊形ADOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間甲乙兩商場(chǎng)搞促銷活動(dòng).甲商場(chǎng)的方案是:在一個(gè)不透明的箱子里放4個(gè)完全相同的小球,球上分別標(biāo)“元”、“元”、“元”、“元”,顧客每消費(fèi)滿元,就可從箱子里不放回地摸出個(gè)球,根據(jù)兩個(gè)小球所標(biāo)金額之和可獲相應(yīng)價(jià)格的禮品.乙商場(chǎng)的方案是:在一個(gè)不透明的箱子里放個(gè)完全相同的小球,球上分別標(biāo)“元”、“元”,顧客每消費(fèi)滿元,就可從箱子里不放回地摸出個(gè)球,根據(jù)兩個(gè)小球所標(biāo)金額之和可獲相應(yīng)價(jià)格的禮品. 某顧客準(zhǔn)備消費(fèi)元,

(1)若該顧客在甲商場(chǎng)消費(fèi),至少可得價(jià)值_________元的禮品,至多可得價(jià)值_________元的禮品;

(2)請(qǐng)用畫樹狀圖或列表法,說明該顧客去哪個(gè)商場(chǎng)消費(fèi),獲得禮品的總價(jià)值不低于元的概率大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生上網(wǎng)現(xiàn)象越來越受到社會(huì)的關(guān)注,小記者小慧隨機(jī)調(diào)查了某校若干學(xué)生和家長對(duì)上網(wǎng)現(xiàn)象的看法,制作了如下的統(tǒng)計(jì)圖①和②。請(qǐng)根據(jù)相關(guān)信息,解答或補(bǔ)全下列問題。

學(xué)生及家長對(duì)中學(xué)生上網(wǎng)的態(tài)度統(tǒng)計(jì)圖 家長對(duì)中學(xué)生上網(wǎng)的態(tài)度統(tǒng)計(jì)圖

1)補(bǔ)全圖①;

2)求圖②中表示家長“贊成”的圓心角的度數(shù);

3)該校共有1600名學(xué)生,請(qǐng)你估計(jì)這所中學(xué)的所有學(xué)生中,對(duì)上網(wǎng)持“反對(duì)”態(tài)度的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,的兩條弦,過點(diǎn),的延長線與點(diǎn).

1)求證:的切線;

2)若,求的值;

3)在(2)的條件下,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)EFC是直角三角形時(shí),那么BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.?dāng)S一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件

B.審查書稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法

C.甲乙兩人在相同條件下各射擊10次,他們的成績(jī)的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績(jī)較穩(wěn)定

D.?dāng)S兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)是正方形的對(duì)角線上一點(diǎn),,,連接,給出下列四個(gè)結(jié)論:

一定是等腰三角形;,

其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案