【題目】問題:如圖1,在平行四邊形ABCD中,點E是BC邊的中點,連結AE,點F是線段AE上一點,連結BF并延長,交射線CD于點G.若AF:EF=4:1,求的值.
(1)嘗試探究:
如圖1,過點E作EH∥AB交BG于點H,則AB和EH的數(shù)量關系是.CG和EH的數(shù)量關系是,因此= .
(2)類比延伸:
在原題的條件下,若把“AF:EF=4:1”改為“AF:EF=n:1”(n>0),求的值.(用含有n的式子表示)
(3)拓展遷移:
如圖2,在四邊形ABCD中,CD∥AB,點E是BC的延長線上的一點,AE與BD相交于點F.若AB:CD=a:1(a>0),BC:BE=b:1(b>0),則= .(直接用含有a、b的式子表示,不寫解答過程)
【答案】(1)2;(2);(3)ab.
【解析】
(1)本問體現(xiàn)“特殊”的情形,=4是一個確定的數(shù)值.根據(jù)平行線構造相似三角形,利用相似三角形性質,分別將各相關線段均統(tǒng)一用EH來表示,最后求得比值;
(2)本問體現(xiàn)“一般”的情形,=n不再是一個確定的數(shù)值,但(1)問中的解題方法依然適用,如答圖2所示.
(3)本問體現(xiàn)“類比”與“轉化”的情形,將(1)(2)問中的解題方法推廣轉化到梯形中,過點E作EH∥AB交BD的延長線于點H,則有EH∥AB∥CD,根據(jù)平行線構造相似三角形,利用相似三角形性質,分別將各相關線段均統(tǒng)一用EH來表示,最后求得比值,如答圖3所示.
解:(1)∵EH∥AB
∴△ABF∽△EHF,
∴==4,
∴AB=4EH.
∵平行四邊形ABCD中,EH∥AB,
∴EH∥CD,
∴△BEH∽△BCG.
∴==2,
∴CG=2EH.
∴===2.
故答案為:2.
(2)如圖2所示,作EH∥AB交BG于點H,
則△EFH∽△AFB.
∴==n,
∴AB=nEH.
∵AB=CD,
∴CD=nEH.
∵EH∥AB∥CD,
∴△BEH∽△BCG.
∴==2,
∴CG=2EH.
∴==.
(3)如圖3所示,過點E作EH∥AB交BD的延長線于點H,則有EH∥AB∥CD.
∵EH∥CD,
∴△BCD∽△BEH,
∴==b,
∴CD=bEH.
又=a,
∴AB=aCD=abEH.
∵EH∥AB,
∴△ABF∽△EHF,
∴===ab,
故答案為:ab.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某幢建筑物從2.25米高的窗口用水管向外噴水,噴的水流呈拋物線型(拋物線所在平面與墻面垂直),如果拋物線的最高點離墻1米,離地面3米,則水流下落點離墻的距離是( )
A.2.5米B.3米C.3.5米D.4米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課堂上同學們借助兩個直角三角形紙板進行探究,直角三角形紙板如圖所示,分別為Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm. 當邊AC與DE重合,且邊AB和DF在同一條直線上時:
(1)在下邊的圖形中,畫出所有符合題意的圖形;
(2)求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉,每次翻轉,連續(xù)翻轉2019次,點的落點依次為,,,…,則的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點E在邊BC上,將△ABE沿AE折疊,點B恰好落在對角線AC上的點B′處.則線段BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種商品的標價為400元/件,經過兩次降價后的價格為324元/件,并且兩次降價的百分率相同.
(1)求該種商品每次降價的百分率;
(2)若該種商品進價為300元/件,兩次降價共售出此種商品100件,共獲利3192元.問第二次降價后售出該種商品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.
(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經過多長時間P、Q兩點之間的距離是10cm?
(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經過多長時間△PBQ的面積為12cm2?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com