已知拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)(-2,0)、(4,0)、(0,3)三點(diǎn).
(1)求這條拋物線(xiàn)的解析式.
(2)怎樣平移此拋物線(xiàn),使該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn)?
分析:(1)設(shè)拋物線(xiàn)解析式為y=a(x+2)(x-4),將(0,3)代入y=a(x+2)(x-4),即可求出a的值,從而得到拋物線(xiàn)的解析式;
(2)將(1)所得解析式化為頂點(diǎn)式,沿y軸移動(dòng)頂點(diǎn)縱坐標(biāo)的絕對(duì)值個(gè)單位長(zhǎng)度即可.
解答:解:(1)設(shè)拋物線(xiàn)解析式為y=a(x+2)(x-4),將(0,3)代入y=a(x+2)(x-4)得,3=-8a,
解得a=-
1
8
,
故此拋物線(xiàn)的解析式為:y=-
1
8
(x+2)(x-4),即y=-
1
8
x2+
1
4
x+1;

(2)∵拋物線(xiàn)的解析式為:y=-
1
8
x2+
1
4
x+1,即y=-
1
8
(x-2)2+
3
2
,
∴將拋物線(xiàn)向下平移
3
2
個(gè)單位時(shí)二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn).
點(diǎn)評(píng):本題考查的是待定系數(shù)法求二次函數(shù)的解析式及拋物線(xiàn)與x軸的交點(diǎn),根據(jù)題意得出拋物線(xiàn)的解析式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線(xiàn)的解析式;
(2)用配方法求拋物線(xiàn)的頂點(diǎn)D的坐標(biāo)和對(duì)稱(chēng)軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2和直線(xiàn)y=kx的交點(diǎn)是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、已知拋物線(xiàn)y=ax2+bx+c的開(kāi)口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線(xiàn)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線(xiàn)y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過(guò)坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州)已知拋物線(xiàn)y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線(xiàn)不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線(xiàn)y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線(xiàn)交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案