如圖,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,
求證:AB∥EF∥CD.
分析:首先根據(jù)平行線的判定得出AB∥EF,進而利用已知角度之間的關(guān)系得出∠FEC=∠ECN,進而得出EF∥CD,即可得出答案.
解答:證明:∵∠1=∠2,
∴AB∥EF(同位角相等,兩直線平行),
∴∠MAE=∠AEF=45°,
∵∠FEG=15°,
∴∠AEG=60°,
∴∠GEC=60°,
∴∠FEC=∠FEG+∠GEC=75°,
∵∠NCE=75°,
∴∠FEC=∠ECN,
∴EF∥CD,
∴AB∥EF∥CD.
點評:此題主要考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)得出∠FEC=∠ECN是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為( 。
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習(xí)冊答案