【題目】在平面直角坐標系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標.
【答案】
(1)解:設(shè)此拋物線的函數(shù)解析式為:
y=ax2+bx+c(a≠0),
將A(﹣4,0),B(0,﹣4),C(2,0)三點代入函數(shù)解析式得:
解得 ,
所以此函數(shù)解析式為:y=
(2)解:∵M點的橫坐標為m,且點M在這條拋物線上,
∴M點的坐標為:(m, ),
∴S=S△AOM+S△OBM﹣S△AOB
= ×4×(﹣ m2﹣m+4)+ ×4×(﹣m)﹣ ×4×4
=﹣m2﹣2m+8﹣2m﹣8
=﹣m2﹣4m,
=﹣(m+2)2+4,
∵﹣4<m<0,
當m=﹣2時,S有最大值為:S=﹣4+8=4.
答:m=﹣2時S有最大值S=4
(3)解:設(shè)P(x, x2+x﹣4).
當OB為邊時,根據(jù)平行四邊形的性質(zhì)知PQ∥OB,且PQ=OB,
∴Q的橫坐標等于P的橫坐標,
又∵直線的解析式為y=﹣x,
則Q(x,﹣x).
由PQ=OB,得|﹣x﹣( x2+x﹣4)|=4,
解得x=0,﹣4,﹣2±2 .
x=0不合題意,舍去.
如圖,當BO為對角線時,知A與P應(yīng)該重合,OP=4.四邊形PBQO為平行四邊形則BQ=OP=4,Q橫坐標為4,代入y=﹣x得出Q為(4,﹣4).
由此可得Q(﹣4,4)或(﹣2+2 ,2﹣2 )或(﹣2﹣2 ,2+2 )或(4,﹣4).
【解析】(1)利用待定系數(shù)法,把ABC三點坐標代入解析式即可求出;(2)最值問題的基本解決策略就是函數(shù)思想,設(shè)出M的橫坐標為m,作為自變量,△AMB的面積為S為函數(shù),由已知得S=S△AOM+S△OBM﹣S△AOB,分別用m的代數(shù)式表示各三角形面積,構(gòu)建出二次函數(shù),運用配方法求出最大值;(3)可分類討論:OB為邊,根據(jù)平行四邊形的性質(zhì)知PQ∥OB,且PQ=OB,構(gòu)建方程|﹣x﹣( 1 2 x2+x﹣4)|=4;當BO為對角線時,A與P應(yīng)該重合,OP=4.四邊形PBQO為平行四邊形,則BQ=OP=4,進而求出坐標.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南山植物園中現(xiàn)有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.
(1)請用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;
(2)現(xiàn)根據(jù)實際需要對A園區(qū)進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.
①求x、y的值;
②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:
求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形△ABC的腰長AB=AC=25,BC=40,動點P從B出發(fā)沿BC向C運動,速度為10單位/秒.動點Q從C出發(fā)沿CA向A運動,速度為5單位/秒,當一個點到達終點的時候兩個點同時停止運動,點P′是點P關(guān)于直線AC的對稱點,連接P′P和P′Q,設(shè)運動時間為t秒.
(1)若當t的值為m時,PP′恰好經(jīng)過點A,求m的值.
(2)設(shè)△P′PQ的面積為y,求y與t之間的函數(shù)關(guān)系式(m<t≤4)
(3)是否存在某一時刻t,使PQ平分角∠P′PC?存在,求相應(yīng)的t值,不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點
(1)求點A、B坐標和∠BAO度數(shù)
(2)點C、D分別是線段OA、AB上一動點(不與端點重合),且CD=DA,設(shè)線段OC的長度為x ,,請求出y關(guān)于x的函數(shù)關(guān)系式以及定義域
(3)點C、D分別是射線OA、射線BA上一動點,且CD=DA,當ΔODB為等腰三角形時,求C的坐標(第(3)小題直接寫出分類情況和答案,不用過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形中,,,點是的中點,動點從點出發(fā),以每秒的速度沿運動,最終到達點.若點運動的時間為秒,那么當_____________秒時,的面積等于.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開通了互聯(lián)網(wǎng)家校合育教育平臺,為了解家長使用平臺的情況,學(xué)校將家長的使用情況分為”經(jīng)常使用”、“偶爾使用”“和“不使用”三種類型,借助該平臺大數(shù)據(jù)功能,匯總出該校八(1)班和八(2)班全體家長的使用情況,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息解答下列問題
(1)此次調(diào)查的家長總?cè)藬?shù)為 ;
(2)扇形統(tǒng)計圖中代表“不使用”類型的扇形圓心角的度數(shù)是 °,并補全條形統(tǒng)計圖;
(3)若該校八年級學(xué)生家長共有1200人,根據(jù)此次調(diào)查結(jié)果估計該校八年級中“經(jīng)常使用”類型的家長約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正確的結(jié)論是( )
A.①②
B.①③
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①c>0;
②若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2;
③2a﹣b=0;
④ <0,
其中,正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com