【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F.若BF=12,AB=10,則AE的長為(
A.10
B.12
C.16
D.18

【答案】D
【解析】解:如圖所示:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分線交BC于點E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四邊形ABEF是平行四邊形,
∵AB=AF,
∴四邊形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF= BF=6,
∴OA= = =8,
∴AE=2OA=16;
故選:D.
先證明四邊形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF= BF=6,由勾股定理求出OA,即可得出AE的長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8的立方根是( )

A. 2B. 4C. 2D. ±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由7個大小相同的小立方塊搭成的一個幾何體.

(1)請在指定位置畫出該幾何體從左面、上面看到的形狀圖;

(2)若從該幾何體中移走一個小立方塊,所得新幾何體與原幾何體相比,從左面、上面看到的形狀圖保持不變,請畫出新幾何體從正面看到的形狀圖。(一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)進(jìn)行跳高測試,每人10次跳高的平均成績恰好是1.6米,方差分別是S2=1.2,S2=0.5,則在本次測試中,同學(xué)的成績更穩(wěn)定(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項式﹣6y4+5xy3﹣4x2+x3y是按(
A.x的降冪排列
B.x的升冪排列
C.y的降冪排列
D.y的升冪排列

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式6﹣4x≥3x﹣8的非負(fù)整數(shù)解為(
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中,有兩個不相等實數(shù)根的是( 。

A.3x25x20B.a2+2a+30C.m24m+40D.y2+40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2x﹣1>3的最小整數(shù)解是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價(萬元)之間滿足關(guān)系式,月產(chǎn)量x(套)與生產(chǎn)總成本(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)求月產(chǎn)量x的范圍;

(2)如果想要每月利潤為1750萬元,那么當(dāng)月產(chǎn)量應(yīng)為多少套?

(3)如果每月獲利潤不低于1900萬元,當(dāng)月產(chǎn)量x(套)為多少時,生產(chǎn)總成本最低?并求出此時的最低成本.

查看答案和解析>>

同步練習(xí)冊答案