【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y的正半軸交于點C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點為E.
(1)拋物線的對稱軸與x軸的交點E坐標(biāo)為_____,點A的坐標(biāo)為_____;
(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點,過點Q作y軸的平行線,與直線BC交于點M,與拋物線交于點N,連結(jié)CN,將△CMN沿CN翻折,M的對應(yīng)點為M′.在圖②中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)E(,0),A(﹣1,0);(2)y=;(3)存在,點Q坐標(biāo)為(,0)或( ,0)
【解析】
(1)根據(jù)對稱軸公式可以求出點E坐標(biāo),設(shè)y=0,解方程即可求出點A坐標(biāo).
(2)如圖①中,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,由tan∠OBC=,列出方程即可解決.
(3)分兩種情形①當(dāng)N在直線BC上方,②當(dāng)N在直線BC下方,分別列出方程即可解決.
解:(1)∵對稱軸x=,
∴點E坐標(biāo)(,0),
令y=0,則有ax2﹣3ax﹣4a=0,
∴x=﹣1或4,
∴點A坐標(biāo)(﹣1,0).
故答案分別為(,0),(﹣1,0).
(2)如圖①中,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,
∵DE=OE=,EB=,OC=﹣4a,
∴DB=,
∵tan∠OBC=,
∴,解得a=,
∴拋物線解析式為y=.
(3)如圖②中,由題意∠M′CN=∠NCB,
∵MN∥OM′,
∴∠M′CN=∠CNM,
∴MN=CM,
∵點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(0,3),
∴ 直線BC解析式為y=﹣x+3,BC=5,
∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,
∵sin∠BCO=,
∴,
∴CM=m,
①當(dāng)N在直線BC上方時,﹣m2+m+3﹣(﹣m+3)=m,
解得:m=或0(舍棄),
∴Q1(,0).
②當(dāng)N在直線BC下方時,(﹣m+3)﹣(﹣m2+m+3)=m,
解得m=或0(舍棄),
∴Q2(,0),
綜上所述:點Q坐標(biāo)為(,0)或( ,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E.
(1)求該二次函數(shù)的解析式;
(2)設(shè)M為該拋物線對稱軸左側(cè)上的一點,過點M作直線MN∥x軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由;
(3)連接CE(如圖2),設(shè)點P是位于對稱軸右側(cè)該拋物線上一點,過點P作PQ⊥x軸,垂足為Q.連接PE,請求出當(dāng)△PQE與△COE相似時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點P是這個菱形內(nèi)部或邊上的一點.若以P,B,C為頂點的三角形是等腰三角形,則P,A(P,A兩點不重合)兩點間的最短距離為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)
①作線段AC的垂直平分線l,交AC于點O;
②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C,把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,得到的等腰直角三角形的直角頂點P2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形ABCD的位置如圖所示,解答下列問題:
(1)將四邊形ABCD先向左平移4個單位,再向下平移6個單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;
(2)將四邊形A1B1C1D1繞點A1逆時針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點C2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com