【題目】如圖已知拋物線y=ax23ax4a(a0)的圖象與x軸交于A、B兩點(AB的左側(cè)),與y的正半軸交于點C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點為E

(1)拋物線的對稱軸與x軸的交點E坐標(biāo)為_____,點A的坐標(biāo)為_____;

(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;

(3)(2)的條件下,如圖②Q(m,0)x的正半軸上一點,過點Qy軸的平行線,與直線BC交于點M,與拋物線交于點N,連結(jié)CN,將△CMN沿CN翻折,M的對應(yīng)點為M′.在圖中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.

【答案】(1)E(,0),A(10);(2)y=(3)存在,點Q坐標(biāo)為(0)( ,0)

【解析】

1)根據(jù)對稱軸公式可以求出點E坐標(biāo),設(shè)y0,解方程即可求出點A坐標(biāo).

2)如圖中,設(shè)E與直線BC相切于點D,連接DE,則DEBC,由tanOBC,列出方程即可解決.

3)分兩種情形當(dāng)N在直線BC上方,當(dāng)N在直線BC下方,分別列出方程即可解決.

解:(1)∵對稱軸x=,

E坐標(biāo)(,0),

y=0,則有ax23ax4a=0,

∴x=14,

A坐標(biāo)(1,0)

故答案分別為(0),(10)

(2)如圖中,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC

∵DE=OE=,EB=,OC=4a

∴DB=,

∵tan∠OBC=,

,解得a=,

拋物線解析式為y=

(3)如圖中,由題意∠M′CN=∠NCB,

∵MN∥OM′

∴∠M′CN=∠CNM,

∴MN=CM

B的坐標(biāo)為(4,0),點C的坐標(biāo)為(03),

直線BC解析式為y=x+3,BC=5

∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OCF

∵sin∠BCO=,

,

∴CM=m,

當(dāng)N在直線BC上方時,﹣m2+m+3(m+3)=m

解得:m=0(舍棄),

∴Q1(,0)

當(dāng)N在直線BC下方時,(m+3)(m2+m+3)=m,

解得m=0(舍棄),

∴Q2(,0)

綜上所述:點Q坐標(biāo)為(,0)( 0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)yax2+bx+c(a≠0)的圖象與x軸交于A(1,0),B(3,0)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E

(1)求該二次函數(shù)的解析式;

(2)設(shè)M為該拋物線對稱軸左側(cè)上的一點,過點M作直線MNx軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由;

(3)連接CE(如圖2),設(shè)點P是位于對稱軸右側(cè)該拋物線上一點,過點PPQx軸,垂足為Q.連接PE,請求出當(dāng)△PQE與△COE相似時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點的中點,的弦,且,垂足為,連接于點,連接,,

(1)求證:

(2),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補充完整;

(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點P是這個菱形內(nèi)部或邊上的一點.若以P,B,C為頂點的三角形是等腰三角形,則P,A(P,A兩點不重合)兩點間的最短距離為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)

①作線段AC的垂直平分線l,交AC于點O;

②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(00),B(20),AP1B是等腰直角三角形,且∠P190°,把AP1B繞點B順時針旋轉(zhuǎn)180°,得到BP2C,把BP2C繞點C順時針旋轉(zhuǎn)180°,得到CP3D,依此類推,得到的等腰直角三角形的直角頂點P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形ABCD的位置如圖所示,解答下列問題:

1)將四邊形ABCD先向左平移4個單位,再向下平移6個單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;

2)將四邊形A1B1C1D1繞點A1逆時針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案