精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB= ,求線段OE的長.

【答案】
(1)解:∵∠CAB=∠ACB,

∴AB=CB,

ABCD是菱形.

∴AC⊥BD


(2)解:在Rt△AOB中,cos∠CAB= = ,AB=14,

∴AO=14× = ,

在Rt△ABE中,cos∠EAB= = ,AB=14,

∴AE= AB=16,

∴OE=AE﹣AO=16﹣ =


【解析】(1)根據∠CAB=∠ACB利用等角對等邊得到AB=CB,從而判定平行四邊形ABCD是菱形,根據菱形的對角線互相垂直即可證得結論;(2)分別在Rt△AOB中和在Rt△ABE中求得AO和AE,從而利用OE=AE﹣AO求解即可.
【考點精析】本題主要考查了平行四邊形的性質和解直角三角形的相關知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:點C在直線AB上,AC=8cm,BC=6cm,點M、N分別是AC、BC的中點,求線段MN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,,,把矩形ABCD繞點A順時針旋轉,當點D落在射線CB上的點P處時,那么線段DP的長度等于_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數字1和﹣2,;乙袋中有三個完全相同的小球,分別標有數字﹣1,0和2;小麗先從甲袋中隨機取出一個小球,記錄下小球上的數字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數字為y,設點P的坐標為(x,y).
(1)請用列表或畫樹狀圖的方法列出點P所有可能的坐標;
(2)求點P在一次函數y=﹣x圖象上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程組:

(1)

(2)

(3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )

A. 賽跑中,兔子共休息了50分鐘

B. 烏龜在這次比賽中的平均速度是0.1米/分鐘

C. 兔子比烏龜早到達終點10分鐘

D. 烏龜追上兔子用了20分鐘

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是中國古代著名的“楊輝三角形”的示意圖.圖中填入的所有數的總和等于(

A. 126 B. 127 C. 128 D. 129

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P,點Q分別代表兩個村莊,直線l代表兩個村莊中間的一條公路.根據居民出行的需要,計劃在公路l上的某處設置一個公交站.

(1)若考慮到村莊P居住的老年人較多,計劃建一個離村莊P最近的車站,請在公路l上畫出車站的位置(用點M表示),依據是   ;

(2)若考慮到修路的費用問題,希望車站的位置到村莊P和村莊Q的距離之和最小,請在公路l上畫出車站的位置(用點N表示),依據是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某城市自來水收費實行階梯水價,收費標準如下表所示:

月用水量

不超過12噸的部分

超過12噸的部分且

不超過18噸的部分

超過18噸的部分

收費標準

2元/噸

2.5元/噸

3元/噸

(1)某用戶四月份用水量為16噸,需交水費為多少元?

(2)某用戶五月份交水費50元,所用水量為多少噸?

(3)某用戶六月份用水量為a噸,需要交水費為多少元?

查看答案和解析>>

同步練習冊答案