分析 分別從當(dāng)PA=PD,PA=AD,AD=PD時(shí),△PAD是等腰三角形討論,然后由等腰三角形的性質(zhì)與射影定理即可求得答案.
解答 解:①當(dāng)PA=PD時(shí),
此時(shí)P位于四邊形ABCD的中心,
過(guò)點(diǎn)P作PE⊥AD于E,作PM⊥AB于M,
則四邊形EAMP是正方形,
∴PM=PE=$\frac{1}{2}$AB=2,
∵PM2=AM•BM=4,
∵AM+BM=4,
∴AM=2,
∴PA=2$\sqrt{2}$,
②當(dāng)PA=AD時(shí),PA=4(舍);
③當(dāng)PD=DA時(shí),以點(diǎn)D為圓心,DA為半徑作圓與弧AB的交點(diǎn)為點(diǎn)P.
連PD,令A(yù)B中點(diǎn)為O,再連DO,PO,DO交AP于點(diǎn)G,
則△ADO≌△PDO,
∴DO⊥AP,AG=PG,
∴AP=2AG,
又∵DA=2AO,
∴AG=2OG,
設(shè)AG為2x,OG為x,
∴(2x)2+x2=4,
∴x=$\frac{2\sqrt{5}}{5}$,
∴AG=2x=$\frac{4\sqrt{5}}{5}$,
∴PA=2AG=$\frac{8\sqrt{5}}{5}$;
∴PA=2$\sqrt{2}$或4或$\frac{8\sqrt{5}}{5}$,
故答案為:2$\sqrt{2}$或$\frac{8\sqrt{5}}{5}$.
點(diǎn)評(píng) 此題考查了正方形的性質(zhì),圓周角的性質(zhì)以及勾股定理等知識(shí).此題綜合性很強(qiáng),解題時(shí)要注意數(shù)形結(jié)合與方程思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com