(2012•舟山)如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
分析:(1)根據(jù)菱形的對(duì)邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對(duì)邊相等即可得證;
(2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對(duì)角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計(jì)算即可得解.
解答:(1)證明:∵菱形ABCD,
∴AB=CD,AB∥CD,
又∵BE=AB,
∴BE=CD,BE∥CD,
∴四邊形BECD是平行四邊形,
∴BD=EC;

(2)解:∵平行四邊形BECD,
∴BD∥CE,
∴∠ABO=∠E=50°,
又∵菱形ABCD,
∴AC丄BD,
∴∠BAO=90°-∠ABO=40°.
點(diǎn)評(píng):本題主要考查了菱形的性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握菱形的對(duì)邊平行且相等,菱形的對(duì)角線互相垂直是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,A、B兩點(diǎn)在河的兩岸,要測(cè)量這兩點(diǎn)之間的距離,測(cè)量者在與A同側(cè)的河岸邊選定一點(diǎn)C,測(cè)出AC=a米,∠A=90°,∠C=40°,則AB等于( 。┟祝

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,點(diǎn)D在BC邊上,把△ABC沿AD翻折使AB與AC重合,得△AB′D,則△ABC與△AB′D重疊部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點(diǎn)C與圓心O重合,則月牙形(圖中實(shí)線圍成的部分)的面積是
4
3
π+2
3
4
3
π+2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•舟山)如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下五個(gè)結(jié)論:
AG
AB
=
FG
FB
;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF=
2
3
AB;⑤S△ABC=5S△BDF,
其中正確結(jié)論的序號(hào)是
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案