【題目】在平面直角坐標(biāo)系中,己知,.點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng);點(diǎn)從點(diǎn)開始沿邊內(nèi)點(diǎn)的速度移動(dòng).如果、同時(shí)出發(fā),用表示移動(dòng)的時(shí)間

1)用含的代數(shù)式表示:線段_______;______;

2)當(dāng)為何值時(shí),四邊形的面積為

3)當(dāng)相似時(shí),求出的值.

【答案】12t,(5t);(2t=23;(3t1

【解析】

1)根據(jù)路程=速度×?xí)r間可求解;

2)根據(jù)S四邊形PABQ=SABOSPQO列出方程求解;

3)分兩種情形列出方程即可解決問(wèn)題.

1OP=2tcm,OQ=(5t)cm

故答案為:2t,(5t)

2)∵S四邊形PABQ=SABOSPQO

1910×52t×(5t),

解得:t=23,

∴當(dāng)t=23時(shí),四邊形PABQ的面積為19cm2

3)∵△POQ與△AOB相似,∠POQ=AOB=90°,

①當(dāng),則,

t,

②當(dāng)時(shí),則,

t=1

綜上所述:當(dāng)t1時(shí),△POQ與△AOB相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)

1)將△ABC向下平移6個(gè)單位得到△A1B1C1,畫出△A1B1C1

2)將△A1B1C1繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△A2B1C2畫出△A2B1C2

3)求在平移和旋轉(zhuǎn)變換過(guò)程中線段BC所掃過(guò)的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=y1+y2,其中y1x成反比例,y2x2成正比例,函數(shù)的自變量x的取值范圍是x,且當(dāng)x=1x=4時(shí),y的值均為

請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:

1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:   

2)函數(shù)圖象探究:

根據(jù)解析式,補(bǔ)全下表:

根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象

3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:

當(dāng)x,8時(shí),函數(shù)值分別為y1,y2,y3,則y1,y2y3的大小關(guān)系為:   ;(用“<”或“=”表示)

若直線y=k與該函數(shù)圖象有兩個(gè)交點(diǎn),則k的取值范圍是   ,此時(shí),x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,邊的中點(diǎn),將沿折疊,使點(diǎn)落在點(diǎn)處,的延長(zhǎng)線與邊交于點(diǎn).下列四個(gè)結(jié)論:;;;S正方形ABCD,其中正確結(jié)論的個(gè)數(shù)為(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,EFAC,垂足為點(diǎn)H,分別交AD、ABCB的延長(zhǎng)線交于點(diǎn)EMF,且AEFB12,則AHAC的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校從甲、乙兩名班主任中選拔一名參加教育局組織的班主任技能比賽,選拔內(nèi)容分案例分析、班會(huì)設(shè)計(jì)、才藝展示三個(gè)項(xiàng)目,選拔比賽結(jié)束后,統(tǒng)計(jì)這兩位班主任成績(jī)并制成了如圖所示的條形統(tǒng)計(jì)圖:

1)乙班班主任三個(gè)項(xiàng)目的成績(jī)中位數(shù)是 ;

2)用6張相同的卡片分別寫上甲、乙兩名班主任的六項(xiàng)成績(jī),洗勻后,從中任意抽取一張,求抽到的卡片寫有“80”的概率;

3)若按照?qǐng)D12所示的權(quán)重比進(jìn)行計(jì)算,選拔分?jǐn)?shù)最高的一名班主任參加比賽,應(yīng)確定哪名班主任獲得參賽資格,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形的一條對(duì)角線將這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),那么我們將這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線.

1)如圖1,四邊形中,,,對(duì)角線平分,求證:是四邊形的相似對(duì)角線;

2)如圖2,直線分別與,軸相交于,兩點(diǎn),為反比例函數(shù))上的點(diǎn),若是四邊形的相似對(duì)角線,求反比例函數(shù)的解析式;

3)如圖3是四邊形的相似對(duì)角線,點(diǎn)的坐標(biāo)為,軸,,連接,的面積為.過(guò)兩點(diǎn)的拋物線)與軸交于,兩點(diǎn),記,若直線與拋物線恰好有3個(gè)交點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,點(diǎn)DAB邊上,CDOB交于點(diǎn)E,∠ACD=∠OBC;

1)如圖1,求證:CDAB;

2)如圖2,當(dāng)∠BAC=∠OBC+BCD時(shí),求證:BO平分∠ABC

3)如圖3,在(2)的條件下,作OFBC于點(diǎn)F,交CD于點(diǎn)G,作OHCD于點(diǎn)H,連接FH并延長(zhǎng),交OB于點(diǎn)P,交AB邊于點(diǎn)M.若OF3,MH5,求AC邊的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案