【題目】丹尼斯超市進了一批成本為 8 /個的文具盒. 調查發(fā)現(xiàn):這種文具盒每個星期的銷售量y()與它的定價 x(/)的關系如圖所示:

(1)求這種文具盒每個星期的銷售量 y()與它的定價 x(/)之間的函數(shù)關系式(不必寫出自變量 x的取值范圍)

(2)每個文具盒的定價是多少元,超市每星期銷售這種文具盒 (不考慮其他因素)可或得的利潤為 1200 ?

(3)若該超市每星期銷售這種文具盒的銷售量小于 115 個, 且單件利潤不低于 4 (x 為整數(shù)),當每個文具盒定價多少 元時,超市每星期利潤最高?最高利潤是多少?

【答案】解:(1);(2)當定價為18元或20元時,利潤為1200元;(3)每個文具盒的定價是18元時,可獲得每星期最高銷售利潤1200元.

【解析】

試題(1)由圖可設函數(shù)關系式為,由圖象過點(10,200)(14,160)即可根據(jù)待定系數(shù)法求解;

2)根據(jù)等量關系:總利潤=單利潤×總數(shù)量,即可列方程求解;

3)先根據(jù)每星期銷售這種文具盒的銷售量不少于115個,且單件利潤不低于4求得x的取值范圍,再根據(jù)等量關系:總利潤=單利潤×總數(shù)量,得到超市每星期的利潤Wx的函數(shù)關系式,最后根據(jù)二次函數(shù)的性質求解即可.

1y=-10x300;

2(x8)·y(x8)(10x300)="1200"

解之得

答:當定價為18元或20元時,利潤為1200元;

3)根據(jù)題意得:,

,且為整數(shù)

設每星期所獲利潤為W

W(x8)·y(x8)(10x300)=-10(x238x240)=-10(x19) 21210

x18時,W有最大值, W最大1200

每個文具盒的定價是18元時,可獲得每星期最高銷售利潤1200.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)的圖象的一支在第一象限,A(﹣1,a)、B(﹣3,b)均在這個函數(shù)的圖象上.

(1)圖象的另一支位于什么象限?常數(shù)n的取值范圍是什么?

(2)試比較a、b的大;

(3)作AC⊥x軸于點C,若△AOC的面積為5,求這個反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長為30,點M為線段AB上一動點,將等邊△ABC沿過點M的直線折疊,使點A落在直線BC上的點D處,且BDDC14,折痕與直線AC交于點N,則AN的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,我國兩艘海監(jiān)船 A,B 在南海海域巡邏,某一時刻,兩船同時收到指令,立即前往救援遇險拋錨的漁船 C,此時,B 船在A 船的正南方向 15 海里處,A 船測得漁船 C 在其南偏東 45°方向,B 船測得漁船 C 在其南偏東 53°方向,已知 A 船的航速為 30 海里/小時,B 船的航速為 25 海里/小時,問 C 船至少要等待多長時間才能得到救援?(參考數(shù)據(jù):sin53°≈,cos53°≈tan53°≈ 4 , 1.41 )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 yx2 bxc經過ABC 的三個頂點,其中點 A(0,1),點 B(910),ACx 軸,點 P 是直線 AC 下方拋物線上的動點,過點 P 且與 y 軸平行的直線 l 與直線 ABAC 分別交于點 E、F.

(1)求拋物線的函數(shù)表達式;

(2)如圖 1,當四邊形 AECP 的面積最大時,求點 P 的坐標和四邊形 AECP 的最大面積;

(3)如圖 2,當點 P 為拋物線的頂點時,在直線 AC 上是否存在點 Q,使得以 C,P,Q 為頂點的三角形與ABC 相似?若存在,請直接寫出點 Q 的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是放在地面上的一個長方體盒子,其中AB=18cm,BC=12cm,BF=10cm,點M在棱AB上,且AM=6cm,點NFG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個工人拿一個米長的梯子,底端放在距離墻根米處,另一端點點靠墻.

1)求這個梯子的頂端距離地面的高度

2)如圖,如果梯子的頂部下滑米,那么梯子的底部向外滑多少米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的三張形狀相同、大小完全相同的方格紙,方格紙中每個小正方形的邊長為1,請依次在3個圖中畫出滿足要求的三角形,要求所畫的三角形的各頂點必須與方格紙中小正方形的頂點重合.

1)畫一個底邊長為4,面積為10的等腰三角形;

2)畫一個面積為10的等腰直角三角形;

3)畫一個一邊長為2且面積為10的等腰三角形.

查看答案和解析>>

同步練習冊答案