【題目】如圖,在四邊形ABCD中,ABCD,∠C=90°,AB=8,AD=CD=5,點MBC上異于BC的一定點,點NAB上的一動點,E、F分別為DMMN的中點,當NAB的運動過程中,線段EF掃過圖形的面積為 ( )

A.4B.4.5C.5D.6

【答案】A

【解析】

MB的中點P,連接FP,EP,DN,由中位線的性質,可得當NAB的運動過程中,點FFP所在的直線上運動,即:線段EF掃過圖形為EFP,求出當點N與點A重合時,FP的值,以及FP上的高,進而即可求解.

MB的中點P,連接FPEP,DN,

FPMNB的中位線,EFDMN的中位線,

FPBN,FP=,EFDN,EF=,

∴當NAB的運動過程中,點FFP所在的直線上運動,即:線段EF掃過圖形為EFP

∴當點N與點A重合時,FP===4

過點DDQAB于點Q

ABCD,∠C=90°,AB=8,AD=CD=5

AQ=8-5=3

DQ=

∴當點N與點Q重合時,EF=EFDQ,即:EFAB,即:EFFP,

EFP中,FP上的高=2

∴當NAB的運動過程中,線段EF掃過圖形的面積=×4×2=4

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在△ABC中,∠C=90°,∠BAC的平分線與外角∠CBE的平分線相交于點D,求∠D的度數(shù).

(2)如圖②,將(1)中的條件改為,其它條件不變,請直接寫出的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的發(fā)展,智能制造逐漸成為一種可能的生產(chǎn)方式.重慶某電子零部件生產(chǎn)商原來采用自動化程度較低的傳統(tǒng)生產(chǎn)方式,工廠有熟練工人和新工人共100人,熟練工平均每天能生產(chǎn)30個零件,新工人平均每天能生產(chǎn)20個零件,所有工人剛好用30天完成了一項7.2萬個零件的生產(chǎn)任務.

(1)請問該工廠有熟練工,新工人各多少人?(請列二元一次方程組解題)

(2)今年,某自動化技術團隊為工廠提供了A、B兩種不同型號的機器人,且兩種機器人都可以單獨完成零件的生產(chǎn).已知A型機器人的售價為80萬元/臺,B型機器人的售價為120萬元/.工廠準備采購價值840萬元的機器人設備,兩種機器人都至少購買一臺,若840萬元剛好用完,求出所有可能的購買方案.

(3)已知一個零件的毛利潤(只扣除了原材料成本)10元,若選擇傳統(tǒng)生產(chǎn)方式,熟練工每月基本工資3000元,新工人每月基本工資2000元,在基本工資之上,工廠還需額外支付計件工資5/件,傳統(tǒng)生產(chǎn)方式的設備成本忽略不計.若選擇智能制造方式生產(chǎn),A型機器人每月生產(chǎn)零件1.5萬個,B型機器人每月能生產(chǎn)零件2.7萬個,1A型機器人需要8名技術人員操控,一臺B型機器人需要12名技術人員操控,技術人員每人工資1萬元,實際生產(chǎn)過程中,一臺A型機器人平均每月的總成本為6萬元(包含所有設備成本和維護成本),一臺B型機器人平均每月的總成本為8萬元(包含所有設備成本和維護成本).請你比較傳統(tǒng)的生產(chǎn)方式和(2)中的所有購買方案對應的智能生產(chǎn)方式,哪種生產(chǎn)方式每月的總利潤最大,最大利潤為多少萬元?(注:每月均按30天計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年3月全國兩會勝利召開,某學校就兩會期間出現(xiàn)頻率最高的熱詞:A.藍天保衛(wèi)戰(zhàn),B.不動產(chǎn)保護,C.經(jīng)濟增速,D.簡政放權等進行了抽樣調查,每個同學只能從中選擇一個“我最關注”的熱詞,如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了  名同學;

(2)條形統(tǒng)計圖中,m=  ,n=  

(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是多少?

【答案】(1)300;(2)60,90;(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是

【解析】試題分析:(1)根據(jù)A的人數(shù)為105人,所占的百分比為35%,求出總人數(shù),即可解答;

(2)C所對應的人數(shù)為:總人數(shù)×30%,B所對應的人數(shù)為:總人數(shù)﹣A所對應的人數(shù)﹣C所對應的人數(shù)﹣D所對應的人數(shù),即可解答;

(3)根據(jù)概率公式,即可解答.

試題解析:(1)105÷35%=300(人),

故答案為:300;

(2)n=300×30%=90(人),

m=300﹣105﹣90﹣45=60(人).

故答案為:60,90;

(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是=

答:從該校學生中隨機抽取一個最關注熱詞D的學生的概率是

型】解答
束】
26

【題目】已知正方形ABCD的邊長為8,點EBC的中點,連接AE,并延長交射線DC于點F,將ABE沿著直線AE翻折,點B落在B′處,延長AB′,交直線CD于點M

1)判斷AMF的形狀并證明;

2)將正方形變?yōu)榫匦?/span>ABCD,且AB=6,BC=8,若B′恰好落在對角線AC上時,得到圖2,此時CF=_____, =_____

3)在(2)的條件下,點EBC邊上.設BEx,ABE沿直線AE翻折后與矩形ABCD重合的面積為y,求yx之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內一點,點P到點A、BD的距離分別為1,,△ADP沿點A旋轉至△ABP′,連結PP′,并延長APBC相交于點Q

1)求證:△APP′是等腰直角三角形;

2)求∠BPQ的大;

3)求CQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-2x-3.

1)求函數(shù)圖象的頂點坐標,與x軸和y軸的交點坐標,并畫出函數(shù)的大致圖象;

2)根據(jù)圖象直接回答:當x滿足 時,y0;當-1x2時,y的范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AC是⊙O的直徑,過點BBEAD,垂足為點E,AB平分∠CAE

1)判斷BE與⊙O的位置關系,并說明理由;

2)若∠ACB=30°O的半徑為4,請求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,D(0-3),M(4,-3),直角三角形ABC的邊與x軸分別交于O、G兩點,與直線DM分別交于E、F點.

(1)將直角三角形ABC如圖1位置擺放,請寫出∠CEF與∠AOG之間的等量關系:______

(2)將直角三角形ABC如圖2位置擺放,NAC上一點,∠NED+CEF=180°,請寫出∠NEF與∠AOG之間的等量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(-2,3)、B(-6,0)、C(-1,0).

(1)請直接寫出點A關于原點O對稱的點的坐標;

(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,寫出點B的對應點的坐標;

(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

同步練習冊答案