【題目】圖中是小明完成的一道作業(yè)題,請(qǐng)你參考小明的解答方法解答下面的問(wèn)題:
小明的作業(yè)
計(jì)算:(-4)7×0.257
解:(-4)7×0.257=(-4×0.25)7
=(-1)7
=-1
(1)計(jì)算①82018×(-0.125)2018②
(2)看2·4n·16n=219 , 求n的值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的拋物線對(duì)稱軸是直線x=1,與x軸有兩個(gè)交點(diǎn),與y軸交點(diǎn)坐標(biāo)是(0,3),把它向下平移2個(gè)單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個(gè)結(jié)論:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,判斷正確的有( 。
A. ②③④B. ①②③C. ②③D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),∠AOB=30°,OP=8,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值為( 。
A. 5B. 6C. 8D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC的邊OC、OA分別位于x、y軸上,點(diǎn)A(0,﹣4)、B(6,﹣4)、C(6,0),拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)O和點(diǎn)C,頂點(diǎn)M(3,﹣),點(diǎn)N是拋物線上一動(dòng)點(diǎn),直線MN交直線AB于點(diǎn)E,交y軸于F,△A′EF是將△AEF沿直線MN翻折后的圖形.
(1)求拋物線的解析式;
(2)當(dāng)四邊AEA′F是正方形時(shí),求點(diǎn)N的坐標(biāo).
(3)連接CA′,求CA′的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=mx+2mx-3m(m≠0)的頂點(diǎn)為H,與軸交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線l:對(duì)稱,過(guò)點(diǎn)B作直線BK∥AH交直線l于K點(diǎn).
(1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線I上。
(2)求此拋物線的解析式;
(3)將此拋物線向上平移,當(dāng)拋物線經(jīng)過(guò)K點(diǎn)時(shí),設(shè)頂點(diǎn)為N,求出NK的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,形如量角器的半圓O的直徑DE-12cm,形如三角板的△ABC中,∠ACB=90°,tan∠ABC= ,BC=12cm半圓O以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在直線BC上。設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t=0s時(shí),半圓O在△ABC的左側(cè),OC=8cm.
(1)點(diǎn)C到直線AB的距離為 ________cm;
(2)當(dāng)t= ________(s)時(shí),⊙O與AC所在直線第一次相切;當(dāng)t=________(s)時(shí),⊙O與AC所在直線第二次相切;
(3)當(dāng)t為何值時(shí),直線AB與半圓O所在的圓相切;
(4)當(dāng)△ABC的一邊所在直線與圓O相切時(shí),若⊙O與△ABC有重疊部分,直接寫(xiě)出重疊部分的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年底我市新湖一路貫通工程圓滿竣工,若要在寬為40米的道路AD兩邊安裝路燈,燈柱AB高10米,路燈的燈臂BC與燈柱AB成130°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路的中心線時(shí)照明效果最好,此時(shí)路燈的燈臂BC應(yīng)為多少米?(結(jié)果精確到0.01)
(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)△ABC和△CDE是兩個(gè)等腰直角三角形,如圖1,其中∠ACB=∠DCE=90°,連結(jié)AD、BE,求證:△ACD≌△BCE.
(2)△ABC和△CDE是兩個(gè)含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD<AC,△CDE從邊CD與AC重合開(kāi)始繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定角度α(0°<α<180°);
①如圖2,DE與BC交于點(diǎn)F,與AB交于點(diǎn)G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;
②若AB=10,DE=8,連結(jié)BD、BE,當(dāng)以點(diǎn)B、D、E為頂點(diǎn)的三角形是直角三角形時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC,則下列結(jié)論:①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為,其中正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com