【題目】已知:如圖,在RtACB中,∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)ECD的中點(diǎn),過點(diǎn)CCFABAE的延長線于點(diǎn)F

1)求證:△ADE≌△FCE

2)若∠DCF=120°,DE=2,求BC的長.

【答案】1)證明見解析;(24

【解析】試題分析:(1)先根據(jù)點(diǎn)ECD的中點(diǎn)得出DE=CE,再由ABCF可知∠BAF=AFC,根據(jù)AAS定理可得出ADE≌△FCE;

(2)根據(jù)直角三角形的性質(zhì)可得出AD=CD=AB,再由ABCF可知∠BDC=180°﹣DCF=180°﹣120°=60°,由三角形外角的性質(zhì)可得出∠DAC=ACD=BDC=30°,進(jìn)而可得出結(jié)論.

試題解析:(1)證明:∵點(diǎn)ECD的中點(diǎn),∴DE=CE

ABCF,∴∠BAF=AFC

ADEFCE中,∵∠BAF=AFCAED=FEC,DE=CE∴△ADE≌△FCEAAS);

(2)解:由(1)得,CD=2DE,DE=2,CD=4.

∵點(diǎn)DAB的中點(diǎn),∠ACB=90°,AB=2CD=8,AD=CD=AB

ABCF,∴∠BDC=180°﹣DCF=180°﹣120°=60°,∴∠DAC=ACD=BDC=×60°=30°,BC=AB=×8=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)形結(jié)合是重要的數(shù)學(xué)思想方法之一,數(shù)形結(jié)合具體地說就是將抽象數(shù)學(xué)語言與直觀圖形結(jié)合起來,使抽象思維與形象思維結(jié)合起來,通過數(shù)之間的對應(yīng)和轉(zhuǎn)變來解決數(shù)學(xué)問題。數(shù)軸是數(shù)形結(jié)合的最基礎(chǔ)圖形,是連接數(shù)與形的橋梁之一,請解決下面的問題:

1)如圖1,點(diǎn)B表示的數(shù)是1,則點(diǎn)A表示的數(shù)是 .

2)如果點(diǎn)M表示數(shù)-2,將點(diǎn)M向右移動(dòng)6個(gè)單位長度到達(dá)終點(diǎn)N,那么終點(diǎn)N表示的數(shù)是4,此時(shí)M、N兩點(diǎn)間的距離是 .

3)若∣x0∣意義表示數(shù)x到原點(diǎn)的距離,則∣x3∣的意義表示數(shù)x3的距離;類似的式子∣x3=4,則x= .

4)由(3)可知,一般地,如果點(diǎn)A表示數(shù)為a,點(diǎn)B表示的數(shù)b,則A、B兩點(diǎn)間的距離表示為 .

5)如圖2,數(shù)軸上的兩個(gè)點(diǎn)A、B所表示的數(shù)分別是ab,點(diǎn)O為原點(diǎn)。在abab,∣a∣-∣b∣這三個(gè)運(yùn)算結(jié)果中,是正數(shù)的有 個(gè).

6)利用數(shù)軸直接寫出∣x2∣+∣x5∣的最小值= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn),將矩形的一個(gè)角沿直線折疊,使得點(diǎn)落在對角線上的點(diǎn)處,折痕與軸交于點(diǎn)

1)求線段的長度;

2)求直線所對應(yīng)的函數(shù)表達(dá)式;

3)若點(diǎn)在線段上,在線段上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.分別是數(shù)軸上兩個(gè)不同點(diǎn)A.B所表示的有理數(shù),且,,A.B兩點(diǎn)在數(shù)軸上的位置如圖所示:

1)數(shù)_____;______;

2A.B兩點(diǎn)相距多少個(gè)單位長度?

3)點(diǎn)PA點(diǎn)出發(fā),先向左移動(dòng)一個(gè)單位長度,再向右移動(dòng)2個(gè)單位長度,再向左移動(dòng)3個(gè)單位長度,再向右移動(dòng)4個(gè)單位長度,依次操作2020次后,求P點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象如圖所示,則一元二次方程x2-(2k-1)x+k2-1=0根的情況是( )

A. 沒有實(shí)根 B. 有兩個(gè)不等實(shí)根 C. 有兩個(gè)相等實(shí)根 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)在數(shù)軸上分別表示有理數(shù)兩點(diǎn)間的距離表示為.且

1)數(shù)軸上表示25的兩點(diǎn)之間的距離是___,

數(shù)軸上表示25的兩點(diǎn)之間的距離是___,

數(shù)軸上表示13的兩點(diǎn)之間的距離是___;

(2)數(shù)軸上表示x1的兩點(diǎn)AB之間的距離是___,如果|AB|=2,那么x=___;

(3)當(dāng)代數(shù)式|x+1|+|x2|取最小值時(shí),相應(yīng)x的取值范圍是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一條直線上選了若干個(gè)點(diǎn),通過數(shù)線段的條數(shù),發(fā)現(xiàn)其中蘊(yùn)含了一定的規(guī)律,下邊是他的探究過程及聯(lián)想到的一些相關(guān)實(shí)際問題.

1)一條直線上有2個(gè)點(diǎn),線段共有1條;一條直線上有3個(gè)點(diǎn),線段共有1+2=3條;一條直線上有4個(gè)點(diǎn),線段共有1+2+3=6一條直線上有10個(gè)點(diǎn),線段共有 .

2)總結(jié)規(guī)律:一條直線上有n個(gè)點(diǎn),線段共有 .

3)拓展探究:具有公共端點(diǎn)的兩條射線OAOB形成1個(gè)角∠AOB∠AOB180°);在∠AOB內(nèi)部再加一條射線OC,此時(shí)具有公共端點(diǎn)的三條射線OA、OB、OC共形成3個(gè)角;以此類推,具有公共端點(diǎn)的n條射線OAOBOC…共形成 個(gè)角

4)解決問題:曲沃縣某學(xué)校九年級1班有45名學(xué)生畢業(yè)留影時(shí),全體同學(xué)拍1張集體照,每2名學(xué)生拍1張兩人照,共拍了多少張照片?如果照片上的每位同學(xué)都需要1張照片留作紀(jì)念,又應(yīng)該沖印多少張紙質(zhì)照片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黑螞蟻沿著大半圓從A地爬到B地,白螞蟻沿著兩個(gè)小半圓弧路線也從A地爬到B地.它們同時(shí)從A地出發(fā),讓人奇怪的是,兩只螞蟻同時(shí)爬到B地.假設(shè)ABa

1)請你幫忙裁決,兩只螞蟻誰爬得快?

2)兩只螞蟻對你的裁決很不滿意,決定到圖2中的比賽場地再比一次,依然黑螞蟻沿著大半圓爬,白螞蟻沿著小半圓爬,同時(shí)從A地出發(fā),那么請問哪只螞蟻先爬到B地?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李師傅一家開車去旅游,出發(fā)前查看了油箱里有50升油,出發(fā)后先后走了城市路、高速路、山路最終到達(dá)旅游地點(diǎn),下面的兩幅圖分別描述了行駛里程及耗油情況,下面的描述錯(cuò)誤的是( )

A. 此車一共行駛了210公里

B. 此車高速路一共用了12升油

C. 此車在城市路和山路的平均速度相同

D. 以此車在這三個(gè)路段的綜合油耗判斷50升油可以行駛約525公里

查看答案和解析>>

同步練習(xí)冊答案