【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線交AC的延長線于點(diǎn)G.
求證:(1)DG⊥AG;
(2)AG+CG=AB.
【答案】見解析
【解析】
(1)連接OD,根據(jù)等腰三角形的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠CAD=∠ODA,利用“內(nèi)錯角相等,兩直線平行”可得出AE∥OD,結(jié)合切線的性質(zhì)即可證出DG⊥AG;
(2)過點(diǎn)D作DM⊥AB于點(diǎn)M,連接CD、DB,根據(jù)角平分線的性質(zhì)可得出DG=DM,
結(jié)合AD=AD、∠AGD=∠AMD=90°即可證出△DAG≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)可得出AG=AM,由∠GAD=∠MAD可得出= ,進(jìn)而可得出CD=BD,結(jié)合DG=DM可證出Rt△DGC≌Rt△DMB(HL),根據(jù)全等三角形的性質(zhì)可得出CG=BM,結(jié)合AB=AM+BM即可證出AG+CG=AB.
(1)連接OD,
OA=OD,
∠OAD=∠ODA,
DA平分∠BAC,
則∠OAD=∠CAD,
∠CAD=∠ODA,
AE∥OD,
DG是⊙O的切線,則
DG⊥AG;
(2)過點(diǎn)D作DM⊥AB于點(diǎn)M,連接CD、DB,
DA平分∠BAC,
DG=DM,
結(jié)合AD=AD、∠AGD=∠AMD=90°,
△DAG≌△DAM(SAS),
AE=AM,
由∠GAD=∠MAD,
= ,
CD=BD,結(jié)合DG=DM可證出Rt△DGC≌Rt△DMB(HL),
CG=BM,
AB=AM+BM,
AG+CG=AB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,、分別在、上,,且,點(diǎn)是的中點(diǎn),延長、相交于點(diǎn),連接.
(1)求證:
(2)若,,求的周長和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班分成甲、乙兩組進(jìn)行一分鐘投籃測試,并規(guī)定得6分及以上為合格,得9分及以上為優(yōu)秀,現(xiàn)兩組學(xué)生的一次測試成績統(tǒng)計如下表:
成績(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組人數(shù)(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組人數(shù)(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請你根據(jù)上表數(shù)據(jù),把下面的統(tǒng)計表補(bǔ)充完整,并寫出求甲組平均分的過程;
統(tǒng)計量 | 平均分 | 方差 | 眾數(shù) | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 |
| 2.56 |
| 6 | 80.0% | 26.7% |
乙組 | 6.8 | 1.76 | 7 |
| 86.7% | 13.3% |
(2)如果從投籃的穩(wěn)定性角度進(jìn)行評價,你認(rèn)為哪組成績更好?并說明理由;
(3)小聰認(rèn)為甲組成績好于乙組,請你說出支持小聰觀點(diǎn)的理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時,y1>y2 其中正確結(jié)論的個數(shù)是( )
A. 1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F分別是矩形ABCD的邊AB,AD上的點(diǎn),∠FEC=∠FCE=45°.
(1)求證:AF=CD.
(2)若AD=3,△EFC的面積為4,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,在平行四邊形內(nèi)作以線段AD為邊的等邊△ADM,連結(jié)AM.
(1)如圖1,若點(diǎn)M在對角線BD上,且∠ABC=105°,AB=,求AM的長;
(2)如圖2,點(diǎn)E為CD邊上一點(diǎn),連接ME,點(diǎn)F是BM的中點(diǎn),,若CE+ME=DE.求證:BM⊥ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿其對角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E,若AB=8,AD=3,則圖中陰影部分的周長為( )
A.16B.19C.22D.25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com