【題目】如圖1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。點P在線段AB上以每秒2個單位的速度由點A向點B運動,同時,點Q在線段BD上由B點向點D運動。它們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=2時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變。設(shè)點Q的運動速度為每秒x個單位,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請說明理由。
【答案】(1)△ACP與△BPQ全等,PC⊥PQ,理由見解析;(2)存在實數(shù)x,使得△ACP與△BPQ全等,,
【解析】
(1)利用HL證得Rt△PAC≌Rt△QBP,得出∠APC=∠PQB,進一步得出∠PQB+∠QPB=∠APC+∠QPB=90°,得出結(jié)論即可;
(2)由△ACP≌△BQP,分兩種情況:①AC=BQ,AP=BP,②AC=BQ,AP=BP,建立方程組求得答案即可.
(1)解:△ACP與△BPQ全等,PC⊥PQ,理由如下:
當t=2時,AP=BQ=2×2=4,BP=AB-AP=12-4=8=AC,
∵ AC⊥AB,BD⊥AB,∴∠PAB=∠PBQ=90°,
在Rt△PAC和Rt△QBP中, ,
∴Rt△PAC≌Rt△QBP,
∴∠APC=∠PQB,
∵∠PQB+∠QPB=90°,
∴∠APC+∠QPB=90°,
即PC⊥PQ.
(2)解:存在實數(shù)x,使得△ACP與△BPQ全等,理由如下:
若△ACP≌△BQP,則AC=BQ,AP=BP,
即,解得;
若△ACP≌△BPQ,則AC=BP,AP=BO,
即,解得.
科目:初中數(shù)學 來源: 題型:
【題目】完善下列解題步輩.井說明解題依據(jù).
如圖,已知∠1=∠2,∠B=∠C,求證:AB∥CD.
證明:∵∠1=∠2(已知)
且∠1=∠CGD(______)
∴∠2=∠CGD(______)
∴______∥______(______),
∴∠C=______(______)
又∵∠B=∠C(已知)
∴______=∠B
AB∥CD(______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P、Q分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設(shè)運動時間為t秒.
連接AQ、CP交于點M,則在P、Q運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);
連接PQ,
當秒時,判斷的形狀,并說明理由;
當時,則______秒直接寫出結(jié)果
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,CD平分∠ACB,且∠3=120°,求∠ACB與∠1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題7分)如圖,點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF,請從下列三個條件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中選擇一個合適的條件,使AB∥ED成立,并給出證明.
(1)選擇的條件是 (填序號)
(2)證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊矩形板材ABCD,AB=3米,AD=6米,E,F(xiàn),G分別在AD,AB,BC上,∠EFG=900,EF=FG= 米,AF<BF.現(xiàn)想從此板材中剪出一個四邊形EFGH,使得∠EHG=450,則四邊形EFGH面
積的最大值是____________平方米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老張裝修完新房,元旦期間到商場購買冰箱、電視機和洗衣機三件家電,剛好該商場推出新年優(yōu)惠活動,具體優(yōu)惠情況如下表:
購物金額(原價) | 折扣優(yōu)惠 |
不超過3000元的部分 | 無折扣優(yōu)惠 |
超過3000元但不超過10000元部分 | 九五折() |
超過10000元的部分 | 九折 |
付款時,還可以享受單筆消費滿2000元立減160元優(yōu)惠 |
如:買原價5000元的商品,實際花費:
(元)
(1)已知老張購買的這三件家電原價合計為11500元,如果一次性支付,請求出他的實際花費;
(2)如果在該商場購買一件原價為元的商品().請用含的代數(shù)式表示實際花費;
(3)付款前,老張突然想到:如果一次性支付,雖然折扣優(yōu)惠更大,卻只能享受一次立減160元優(yōu)惠,如果將這三件家電分開支付或者兩件合并支付.另一件單獨支付,就可以享受多次立減160元優(yōu)惠,已知老張購買的冰箱原價4800元,電視機原價4600元,洗衣機原價2100元,請你通過計算幫老張設(shè)計出最優(yōu)惠的支付方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1的正方形,四邊形ABCD的頂點與點E都是格點.
(1)作出四邊形ABCD關(guān)于直線AC對稱的四邊形AB′CD′;
(2)求四邊形ABCD的面積;
(3)若在直線AC上有一點P,使得P到D、E的距離之和最小,請作出點P(請保留作圖痕跡),且求出PC=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com