【題目】如圖1,等邊三角形中,D邊上一點,滿足,連接,以點A為中心,將射線順時針旋轉(zhuǎn)60°,與的外角平分線交于點E

1)依題意補全圖1

2)求證:;

3)若點B關(guān)于直線的對稱點為F,連接

①求證:;

②若成立,直接寫出的度數(shù)為_________°

【答案】1)圖見解析;(2)證明見解析;(3)①證明見解析; 20°

【解析】

1)根據(jù)題意,射線順時針旋轉(zhuǎn)60°,用尺規(guī)作圖法,做出∠DAE = ∠C = 60°,再連接DE,即完成作圖;

(2)在等邊三角形ABC中,由可得出;由射線繞點A順時針旋轉(zhuǎn)60°得到射線,可得∠DAE =,進而得出;由平分∠ABC的外角可得,進而推出,由此可證ASA),再根據(jù)三角形全等的性質(zhì)易證;

(3)①連接,設(shè),根據(jù)點B與點F關(guān)于直線對稱的性質(zhì)可得;由易得;在等邊三角形中, ,易證,,又因為,再根據(jù)三角形AFC的內(nèi)角和定理,可推出,和前面的證明聯(lián)立可得,所以同旁內(nèi)角互補,.

②通過圖中各個三角形的內(nèi)角和之間的關(guān)系,設(shè)∠BAD=α,通過證明∠CFA=COF推論出,即可計算出∠BAD=20°.

1)依題意補全圖形

2)證明:

是等邊三角形,

∵射線繞點A順時針旋轉(zhuǎn)60°得到射線,

,

平分,

(3)①證明:連接,設(shè),

∵點B與點F關(guān)于直線對稱,

,

,

∵等邊三角形中,,

,

,

,

,

∠EAF=∠F=

∠DAF = α,

,由②BE=CD

BD=CF

∴∠CFA=COF

3α=60°

∴α=20°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2bxca≠0)的對稱軸為直線x=-2,與x軸的一個交點在(-3,0)和(-4,0)之間,其部分圖象如圖所示.則下列結(jié)論:①4ab0;②c<0;③-3ac>0;④4a2b>at2btt為實數(shù));⑤點,是該拋物線上的點,則y1<y2<y3.其中正確結(jié)論的個數(shù)是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰梯形ABCD中,ADBCAB=DC=5,AD=6BC=12

1)梯形ABCD的面積等于

2)如圖1,動點PD點出發(fā)沿DCDC以每秒1個單位的速度向終點C運動,動點QC點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當P點到達C點時,Q點隨之停止運動.當PQAB時,P點離開D點多少時間?

3)如圖2,點K是線段AD上的點,MN為邊BC上的點,BM=CN=5,連接AN、DM,分別交BKCK于點E、F,記△ ADG和△ BKC重疊部分的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的邊長為2,函數(shù)的圖象經(jīng)過點B,與直線交于點D

1)求k的值;

2)直線邊所在直線交于點M,與x軸交于點N

①當點D中點時,求b的值;

②當時,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小王同學過直線外一點作該直線的平行線的尺規(guī)作圖過程.

已知:直線l及直線l外一點P

求作:直線,使得

作法:如圖,

①在直線l外取一點A,作射線與直線l交于點B,

②以A為圓心,為半徑畫弧與直線l交于點C,連接,

③以A為圓心,為半徑畫弧與線段交于點,

則直線即為所求.

根據(jù)小王設(shè)計的尺規(guī)作圖過程,,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵,

,(______________________)(填推理的依據(jù)).

__________,

,

____________________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,,、是對角線上的兩個動點(靠近點),且,是正方形四邊上的任意一點.若是等邊三角形,則 AE的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象經(jīng)過點0-4)和-2,2.

1)求的值,并用含的式子表示;

2)求證:此拋物線與軸有兩個不同交點;

3)當時,若二次函數(shù)滿足的增大而減小,求的取值范圍;

(4) 直線上有一點5),將點向右平移4個單位長度,得到點,若拋物線與線段只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形ABCD中,點EF是對角線AC的三等分點,點P在正方形的邊上,則滿足PE+PF=的點P的個數(shù)是(

A.0B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x2x軸,y軸分別交于點D,C.點G,H是線段CD上的兩個動點,且∠GOH45°,過點GGAx軸于A,過點HHBy軸于B,延長AGBH交于點E,則過點E的反比例函數(shù)y的解析式為_____

查看答案和解析>>

同步練習冊答案