【題目】如圖,在平面直角坐標(biāo)系中,正方形的邊長為2,函數(shù)的圖象經(jīng)過點B,與直線交于點D

1)求k的值;

2)直線邊所在直線交于點M,與x軸交于點N

①當(dāng)點D中點時,求b的值;

②當(dāng)時,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.

【答案】1;(2)①;②

【解析】

1)把代入,求解即可;

2)①根據(jù)題意得出D的坐標(biāo)為(4,1),代入即可;

②當(dāng)D在BC上方時,得D的坐標(biāo)為(1,4),代入,得,即可得到b的取值范圍.

1)把代入

解得:;

2)①如圖:

當(dāng)點D中點時,可得D的縱坐標(biāo)為1

代入x=4

代入得:;

②當(dāng)DBC上方雙曲線上時,

當(dāng)D點到直線BC的距離大于2時,

DMMN,

當(dāng)D點到直線BC的距離等于2時,D點縱坐標(biāo)為4

D點縱坐標(biāo)為4,代入得橫坐標(biāo)為1,

D的坐標(biāo)為(1,4),

D(1,4)代入,

得:,

∴當(dāng)時,DM=MN,

當(dāng)時,DMMN,

當(dāng)DBC下方雙曲線上時,

DMMN,不符合題意,

b的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點Ay軸正半軸上,ACx軸,點B、C的橫坐標(biāo)都是3,且BC2,點DAC上,若反比例函數(shù)yx0)的圖象經(jīng)過點BD.且AOBC32

1)求點D坐標(biāo);

2)將△AOD沿著OD折疊,設(shè)頂點A的對稱點為A′,試判斷點A′是否恰好落在直線BD上,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為M(2-4),且過點A(-15),連接AMx軸于點B

(1)求這條拋物線的解析式;

(2)求點B的坐標(biāo);

(3)設(shè)點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,過以P為頂角頂點、PO為腰的等腰三角形的另一頂點Cx軸的垂線交直線AM于點D,連結(jié)PD,設(shè)△PCD的面積為S,求Sx之間的函數(shù)關(guān)系式;

(4)在上述動點P(x,y)中,是否存在使=2的點?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,以BC為直徑作半圓O,以點D為圓心、DA為半徑做圓弧交半圓O于點P.連結(jié)DP并延長交AB于點E

1)求證:DE為半圓O的切線;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的中點,點上(點不與重合),過點的直線交,交射線于點,設(shè),

1)如圖1,若為等邊三角形,點重合,,求證:

2)如圖2,若點重合,求證:;

3)如圖3,若,,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情期間某校學(xué)生積極觀看網(wǎng)絡(luò)直播課程,為了了解全校500名學(xué)生觀看網(wǎng)絡(luò)直播課程的情況,隨機抽取50名學(xué)生,對他們觀看網(wǎng)絡(luò)直播課程的節(jié)數(shù)進(jìn)行收集,并對數(shù)據(jù)進(jìn)行了整理、描述和分析,下面給出了部分信息.

觀看直播課節(jié)數(shù)的頻數(shù)分布表

節(jié)數(shù)x

頻數(shù)

頻率

8

0.16

10

0.20

16

0.24

4

0.08

總數(shù)

50

1

其中,節(jié)數(shù)在這一組的數(shù)據(jù)是:

20 20 21 22 23 23 23 23 25 26 26 26 27 28 28 29

請根據(jù)所給信息,解答下列問題:

1__________,__________

2)請補全頻數(shù)分布直方圖;

3)隨機抽取的50名學(xué)生觀看直播課節(jié)數(shù)的中位數(shù)是___________;

4)請估計該校學(xué)生中觀看網(wǎng)絡(luò)直播課節(jié)數(shù)不低于30次的約有__________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊三角形中,D邊上一點,滿足,連接,以點A為中心,將射線順時針旋轉(zhuǎn)60°,與的外角平分線交于點E

1)依題意補全圖1;

2)求證:

3)若點B關(guān)于直線的對稱點為F,連接

①求證:;

②若成立,直接寫出的度數(shù)為_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年新型冠狀病毒肆虐全球,某地區(qū)有一外來無癥狀感染者,沒有有效隔離,經(jīng)過兩輪傳染后共有121人患了流感.

1)每輪傳染中平均一個人傳染了多少個人?

2)如果不及時控制,第三輪將又有多少人被傳染?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù):

黃金分割

天文學(xué)家開普勒把黃金分割稱為神圣分割,并指出畢達(dá)哥拉斯定理(勾股定理)和黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠寶,歷史上最早正式在書中使用“黃金分割”這個名稱的是歐姆,19世紀(jì)以后“黃金分割”的說法逐漸流行起來,黃金分割被廣泛應(yīng)用于建筑等領(lǐng)域.黃金分割指把一條線段分為兩部分,使其中較長部分與線段總長之比等于較短部分與較長部分之比,該比值為.用下面的方法(如圖①)就可以作出已知線段的黃金分割點

①以線段為邊作正方形,

②取的中點,連接

③延長,使

④以線段為邊作正方形,點就是線段的黃金分割點.

以下是證明點就是線段的黃金分割點的部分過程:

證明:設(shè)正方形的邊長為1,則,

中點,

,

中,

,

,

任務(wù):

1)補全題中的證明過程;

2)如圖②,點為線段的黃金分割點,分別以為邊在線段同側(cè)作正方形和矩形,連接.求證:

3)如圖③,在正五邊形中,對角線分別交于點求證:點的黃金分割點.

查看答案和解析>>

同步練習(xí)冊答案