【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個(gè)交點(diǎn)為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號(hào)和π)
【答案】
(1)
解:(1)直線BC與⊙O相切;
連結(jié)OD,如圖所示,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠BAC的角平分線AD交BC邊于D,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴OD∥AC,
∴∠ODB=∠C=90°,
即OD⊥BC.
又∵直線BC過半徑OD的外端,
∴直線BC與⊙O相切.
(2)
解:①設(shè)OA=OD=r,在Rt△BDO中,∠B=30°,
∴OB=2r,
在Rt△ACB中,∠B=30°,
∴AB=2AC=6,
∴3r=6,解得r=2.
②在Rt△ACB中,∠B=30°,
∴∠BOD=60°.
∴.
∴所求圖形面積為.
【解析】(1)連接OD,根據(jù)平行線判定推出OD∥AC,推出OD⊥BC,根據(jù)切線的判定推出即可;
(2)①根據(jù)含有30°角的直角三角形的性質(zhì)得出OB=2OD=2r,AB=2AC=3r,從而求得半徑r的值;②根據(jù)S陰影=S△BOD﹣S扇形DOE求得即可.
此題考查了圓的綜合應(yīng)用,涉及知識(shí)點(diǎn)有平行線性質(zhì),切線的判定,特殊角的直角三角形和分割法求陰影面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班抽查25名學(xué)生數(shù)學(xué)測(cè)驗(yàn)成績(jī)(單位:分),頻數(shù)分布直方圖如圖:
(1)成績(jī)x在什么范圍的人數(shù)最多?是多少人?
(2)若用半徑為2的扇形圖來描述,成績(jī)?cè)?0≤x<70的人數(shù)對(duì)應(yīng)的扇形面積是多少?
(3)從相成績(jī)?cè)?0≤x<60和90≤x<100的學(xué)生中任選2人.小李成績(jī)是96分,用樹狀圖或列表法列出所有可能結(jié)果,求小李被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島是我國(guó)固有領(lǐng)土.某校七年級(jí)(15)班舉行“愛國(guó)教育”為主題班會(huì)時(shí),就有關(guān)釣魚島新聞的獲取途徑,對(duì)本班50名學(xué)生進(jìn)行調(diào)查(要求每位同學(xué),只選自己最認(rèn)可的一項(xiàng)),并繪制如圖所示的扇形統(tǒng)計(jì)圖.
(1)該班學(xué)生選擇“報(bào)刊”的有 人.在扇形統(tǒng)計(jì)圖中,“其它”所在扇形區(qū)域的圓心角是 度.(直接填結(jié)果)
(2)如果該校七年級(jí)有1500名學(xué)生,利用樣本估計(jì)選擇“網(wǎng)站”的七年級(jí)學(xué)生約有 人.(直接填結(jié)果)
(3)如果七年級(jí)(15)班班委會(huì)就這5種獲取途徑中任選兩種對(duì)全校學(xué)生進(jìn)行調(diào)查,求恰好選用“網(wǎng)站”和“課堂”的概率.(用樹狀圖或列表法分析解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運(yùn)算max{a,b}:當(dāng)a≥b時(shí),max{a,b}=a;當(dāng)a<b時(shí),max{a,b}=b.如max{﹣3,2}=2.
(1)max{,3}= ;
(2)已知y1=和y2=k2x+b在同一坐標(biāo)系中的圖象如圖所示,若max{,k2x+b}=,結(jié)合圖象,直接寫出x的取值范圍;
(3)用分類討論的方法,求max{2x+1,x﹣2}的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)2﹣1﹣tan60°+(π﹣2015)0+|﹣|;
解方程:(2)x2﹣1=2(x+1).
(1)計(jì)算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;
(2)解方程:x2﹣1=2(x+1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)響應(yīng)“陽(yáng)光體育運(yùn)動(dòng)”號(hào)召,利用課外活動(dòng)積極參加體育鍛煉,每位同學(xué)從長(zhǎng)跑、鉛球、立定跳遠(yuǎn)、籃球定時(shí)定點(diǎn)投籃中任選一項(xiàng)進(jìn)行了訓(xùn)練,訓(xùn)練前后都進(jìn)行了測(cè)試,現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃進(jìn)球數(shù)進(jìn)行整理,作出如下統(tǒng)計(jì)圖表.
訓(xùn)練后籃球定點(diǎn)投籃測(cè)試進(jìn)球統(tǒng)計(jì)表
進(jìn)球數(shù)(個(gè)) | 8 | 7 | 6 | 5 | 4 | 3 |
人數(shù) | 2 | 1 | 4 | 7 | 8 | 2 |
請(qǐng)你根據(jù)圖表中的信息回答下列問題:
(1)訓(xùn)練后籃球定時(shí)定點(diǎn)投籃人均進(jìn)球數(shù)為 個(gè);
(2)選擇長(zhǎng)跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是 ,該班共有同學(xué) 人;
(3)根據(jù)測(cè)試資料,參加籃球定時(shí)定點(diǎn)投籃的學(xué)生訓(xùn)練后比訓(xùn)練前的人均進(jìn)球增加了25%,求參加訓(xùn)練之前的人均進(jìn)球數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+3交AB,BC于點(diǎn)M,N,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭(zhēng)議的情境:
請(qǐng)根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng)
(2)請(qǐng)你判斷誰(shuí)的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿BD對(duì)折,點(diǎn)A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com