【題目】如圖,在中,,垂足為,,點在上,,分別是的中點,求的度數(shù).
【答案】90°
【解析】
由垂直的定義得到∠ADB=∠ADC=90°,根據(jù)SAS可得△ABD≌△CDE;根據(jù)全等三角形的性質(zhì)得到∠BAD=∠DCE,根據(jù)直角三角形的性質(zhì)得到AM=CN,由△ADM≌△CDN,可得∠ADM=∠CDN,再根據(jù)∠CDN+∠ADN=90°,可得∠ADM+∠ADN=90°,即可得出∠MDN=90°.
∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD與△CDE中,,∴△ABD≌△CDE(SAS),∴∠BAD=∠DCE,AB=CE.
∵M、N分別是AB、CE的中點,∴AMAB,CNCE,∴AM=CN.在△ADM和△CDN中,,∴△ADM≌△CDN(SAS),∴∠ADM=∠CDN.
∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個數(shù)是
①若代數(shù)式有意義,則x的取值范圍為x≤1且x≠0.
②我市生態(tài)旅游初步形成規(guī)模,2012年全年生態(tài)旅游收入為302 600 000元,保留三個有效數(shù)字用科學(xué)記數(shù)法表示為3.03×108元.
③若反比例函數(shù)(m為常數(shù)),當(dāng)x>0時,y隨x增大而增大,則一次函數(shù)y=﹣2x+m的圖象一定不經(jīng)過第一象限.
④若函數(shù)的圖象關(guān)于y軸對稱,則函數(shù)稱為偶函數(shù),下列三個函數(shù):y=3,y=2x+1,y=x2中偶函數(shù)的個數(shù)為2個.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形AEHC是由三個全等矩形拼成的,AH與BE、BF、DF、DG、CG分別交于點P、Q、K、M、N.設(shè)△BPQ,△DKM,△CNH的面積依次為S1,S2,S3.若S1+S3=20,則S2的值為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE. 將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
① 當(dāng)時,;② 當(dāng)時,
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.
(3)問題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(x+y)2-2x(x+y); (2)(a+1)(a-1)-(a-1)2;
(3)先化簡,再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點為延長線上一點,連接,過分別作,垂足為,交于點,作,垂足為,交于點.
(1)求證:;
(2)如圖,點在的延長線上,且,連接并延長交于點,求證:;
(3)在(2)的條件下,當(dāng)時,請直接寫出的值為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2作A1B2平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則等邊△A2017A2018B2018的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤10),過點D作DF⊥BC于點F,連接DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(2)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com