【題目】在等腰中,的對(duì)邊分別為,已知是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,則的周長(zhǎng)是__________

【答案】或7

【解析】

首先根據(jù)題意判斷,等腰三角形沒有明確誰是腰和底,分兩種情況進(jìn)行計(jì)算:①當(dāng)a為底邊時(shí),bc為腰,即b=c,先解出m的值,進(jìn)而得出bc的值,即可得出的周長(zhǎng);②當(dāng)a為腰時(shí),bc為任意一個(gè)為另一條腰,即b=a=3,解得c的值,即可得出的周長(zhǎng).

解:分兩種情況計(jì)算:

①當(dāng)a為底邊時(shí),bc為腰,即b=c,

b是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,

解得

當(dāng)時(shí),方程的根為-1,不符合題意,舍去,即

即得,b=c=2,

的周長(zhǎng)是2+2+3=7

當(dāng)a為腰時(shí),b和c為任意一個(gè)為另一條腰,即b=a=3,

b是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,

將b=3代入,即得,則

方程為

b+c=,得c=

的周長(zhǎng)是3+3+=

故答案為7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)O作直線EFBD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BEDF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BFBE邊上,且BGBI,連接GD,HGD的中點(diǎn),連接FH,并延長(zhǎng)FHED于點(diǎn)J,連接IJ,IHIF,IG.試探究線段IHFH之間滿足的關(guān)系,并說明理由;

3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足ABAD時(shí),點(diǎn)E是對(duì)角線AC上一點(diǎn),連接DE,作EFDE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請(qǐng)直接寫出線段AG,GEEC三者之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在菱形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BCDB運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。

A. B. C. 5D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>

(1)(x1) 23 (x 1)20 (2) (3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某集團(tuán)公司為適應(yīng)市場(chǎng)競(jìng)爭(zhēng),趕超世界先進(jìn)水平,每年將銷售總額的8%作為新產(chǎn)品開發(fā)研究資金,該集團(tuán)2000年投入新產(chǎn)品開發(fā)研究資金為4000萬元,2002年銷售總額為7.2億元,求該集團(tuán)2000年到2002年的年銷售總額的平均增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多好佳水果店在批發(fā)市場(chǎng)購買某種水果銷售,第一次用1500元購進(jìn)若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)45%售完剩余的水果.

(1)第一次水果的進(jìn)價(jià)是每千克多少元?

(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M、N是邊長(zhǎng)為6的正方形ABCD的邊CD上的兩個(gè)動(dòng)點(diǎn),滿足AMBN,連接ACBN于點(diǎn)E,連接DEAM于點(diǎn)F,連接CF

1)求證:DEBE;

2)判斷DEAM的位置關(guān)系,并證明;

3)判斷線段CF是否存在最小值?若存在,求出來,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶某中學(xué)組織七、八、九年級(jí)學(xué)生參加“直轄20年,點(diǎn)贊新重慶”作文比賽,該校將收到的參賽作文進(jìn)行分年級(jí)統(tǒng)計(jì),繪制了如圖1和如圖2兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計(jì)圖中九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角是 度,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)經(jīng)過評(píng)審,全校有4篇作文榮獲特等獎(jiǎng),其中有一篇來自七年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)作文中任選兩篇刊登在?希(qǐng)利用畫樹狀圖或列表的方法求出七年級(jí)特等獎(jiǎng)作文被選登在?系母怕剩

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的邊軸上,交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).若將菱形向左平移個(gè)單位,使點(diǎn)落在該反比例函數(shù)圖象上,則的值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案