已知等式y(tǒng)=ax2+bx+c,且當(dāng)x=1時(shí)y=-4;當(dāng)x=-1時(shí)y=0;當(dāng)x=3時(shí)y=0,求a,b的值.
考點(diǎn):解三元一次方程組
專題:計(jì)算題
分析:將x、y的值分別代入y=ax2+bx+c,轉(zhuǎn)化為關(guān)于a、b、c的方程,再根據(jù)解三元一次方程組的步驟分別求出a、b的值即可.
解答:解:把x=1時(shí)y=-4;x=-1時(shí)y=0;x=3時(shí)y=0代入y=ax2+bx+c得:
a+b+c=-4  ①
a-b+c=0  ②
9a+3b+c=0 ③
,
①-②得:b=-2,
把b=-2代入②得:a+c=-2,④
把b=-2代入③得:9a+c=6,⑤
⑤-④得:a=1,
則a=1,b=-2.
點(diǎn)評:本題考查了三元一次方程組的解法.關(guān)鍵是把“三元”轉(zhuǎn)化為“二元”、把“二元”轉(zhuǎn)化為“一元”的消元方法進(jìn)行求解,從而進(jìn)一步理解把“未知”轉(zhuǎn)化為“已知”和把復(fù)雜問題轉(zhuǎn)化為簡單問題的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對任意實(shí)數(shù)k,(k+1)x2-3(k+m)x+4kn=0,總有一個(gè)根為1,求m、n的值,并解出此方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動商城的自行車銷售量自2013年起逐月增加據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.若該商城前4個(gè)月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

運(yùn)用適當(dāng)?shù)墓接?jì)算:
(1)(-1+4x)(4x-1)
(2)(m-3)(-m+3)
(3)(-3a+b)(-3a-b)  
(4)(3a-2b)(-3a-2b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△CDE都是等邊三角形,且點(diǎn)A,C,E在一條直線上.
(1)AD與BE相等嗎?為什么?
(2)連接MN,試說明△MNC為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(萬件)之間的關(guān)系如下表:
x(元) 10 15 20
y(件) 30 25 20
若日銷售量y是銷售價(jià)x的一次函數(shù).
(1)求出日銷售量y(萬件)與銷售價(jià)x(元)的函數(shù)關(guān)系式;
(2)若每日的銷售利潤為w(萬元),要使每日的銷售利潤最大,每件產(chǎn)品的銷售價(jià)應(yīng)為多少元?此時(shí)每日銷售利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種產(chǎn)品的銷售單價(jià)不得高于23元,如果廠商每月要獲得不少于125萬元的利潤,那么這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

運(yùn)用完全平方公式計(jì)算:1992

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)a,b,c滿足a+b+c=2,且對任何實(shí)數(shù)t,都有不等式-t2+2t≤ab+bc+ca≤9t2-18t+10,求證:0≤a≤
4
3
,0≤b≤
4
3
,0≤c≤
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=AC,∠BAC=120°,延長BC到D,使CD=AC,則∠CDA=
 
度.

查看答案和解析>>

同步練習(xí)冊答案