【題目】如圖,矩形中,,點(diǎn)上一點(diǎn),將沿折疊得到,點(diǎn)上一點(diǎn),將沿折疊得到,且落在線段上,當(dāng)時(shí),則的長為___.

【答案】2

【解析】

由折疊可得∠AEH=BEC=90°,進(jìn)而得出RtAEH中,AE2+EH2=AH2,設(shè)BE=x,則EF=x,CE=6-x=EG,再根據(jù)勾股定理,即可得到方程x2+42+6-x2+6-2x2=2x-22+62,解該一元二次方程,即可得到BE的長.

如圖,連接AH,

由折疊可得,BE=FE,EC=EG,GH=CH,∠AEB=AEF,∠CEH=GEH,

∴∠AEH=BEC=90°,

RtAEH中,AE2+EH2=AH2,①

設(shè)BE=x,則EF=xCE=6-x=EG

GF=6-2x=GH=CH,DH=4-6-2x=2x-2

∵∠B=C=D=90°,

RtABE中,AE2=EB2+AB2=x2+42,

RtCEH中,HE2=EC2+CH2=6-x2+6-2x2,

RtADH中,AH2=DH2+AD2=2x-22+62,

代入①式,可得

x2+42+6-x2+6-2x2=2x-22+62,

解得x1=2,x2=12(舍去),

BE的長為2,

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠ADB=90°,AB=2AD,BD的垂直平分線分別交AB,CD于點(diǎn)EF,垂足為O

1)求tan ABD的值;

2)求證:OE=OF

3)連接DE,BF,若AD=6,求DEBF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績進(jìn)行了統(tǒng)計(jì),繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:

(1)本次抽測(cè)的男生有________人,抽測(cè)成績的眾數(shù)是_________

(2)請(qǐng)將條形圖補(bǔ)充完整;

(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=BC,點(diǎn)OAC的中點(diǎn),點(diǎn)PAC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,O,C重合).過點(diǎn)A,點(diǎn)C作直線BP的垂線,垂足分別為點(diǎn)E和點(diǎn)F,連接OE,OF.

(1)如圖1,請(qǐng)直接寫出線段OEOF的數(shù)量關(guān)系;

(2)如圖2,當(dāng)∠ABC=90°時(shí),請(qǐng)判斷線段OEOF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由

(3)若|CF﹣AE|=2,EF=2,當(dāng)POF為等腰三角形時(shí),請(qǐng)直接寫出線段OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形是矩形,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向以每秒個(gè)單位長度的速度運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿軸正半軸方向以每秒個(gè)單位長度的速度運(yùn)動(dòng).設(shè)點(diǎn),點(diǎn)的運(yùn)動(dòng)時(shí)間為.

1)當(dāng)時(shí),按要求回答下列問題

______________;

②求經(jīng)過,,三點(diǎn)的拋物線的解析式,若將拋物線軸上方的部分圖象記為,已知直線有兩個(gè)不同的交點(diǎn),求的取值范圍;

2)連接,點(diǎn),在運(yùn)動(dòng)過程中,記與矩形重疊部分的面積為,求的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=60°,DBC上一點(diǎn),過點(diǎn)DDEABE

1)連接AD,取AD中點(diǎn)F,連接CFCE,FE,判斷CEF的形狀并說明理由

2)若BD=CD,將BED繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)0n180),當(dāng)點(diǎn)B落在RtABC的邊上時(shí),求出n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)(ab,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2 ,0)(3 0)之間,對(duì)稱軸是x=1.對(duì)于下列結(jié)論:① ab0;② 2a+b=0;③ 3a+c0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤ 當(dāng)-1x3時(shí),y0. 其中正確結(jié)論的個(gè)數(shù)為( )

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個(gè)矩形對(duì)角線交點(diǎn)重合,且使重疊部分成為一個(gè)菱形.當(dāng)兩張紙條垂直時(shí),菱形周長的最小值是4,把一個(gè)矩形繞兩個(gè)矩形重合的對(duì)角線交點(diǎn)旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是(  )

A. 8B. 10C. 10.4D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案