【題目】如圖所示,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=80°,點(diǎn)C是⊙O上不同于A、B的任意一點(diǎn),求∠ACB的度數(shù).
【答案】①若C點(diǎn)在劣弧AB上,則∠ACB=130°;②若C點(diǎn)在優(yōu)弧AB上,則∠ACB=50°.
【解析】
本題注意要分情況討論:C點(diǎn)在劣弧AB上或點(diǎn)C點(diǎn)在優(yōu)弧AB上.連接過(guò)切點(diǎn)的半徑,根據(jù)四邊形的內(nèi)角和定理求得∠AOB的度數(shù),進(jìn)一步根據(jù)圓周角定理進(jìn)行計(jì)算.
連接OA、OB,在AB弧上任取一點(diǎn)C,連接AC、BC.
∵PA、PB是⊙O的切線,A、B為切點(diǎn),∴∠OAP=∠OBP=90°.
∵∠APB=80°,在四邊形OAPB中,可得∠AOB=100°.
分兩種情況討論:
①若C點(diǎn)在劣弧AB上,則∠ACB=130°;
②若C點(diǎn)在優(yōu)弧AB上,則∠ACB=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF=CD,連接CF.
(1)求證:△AEF≌△DEB;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點(diǎn)B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點(diǎn)順時(shí)針旋轉(zhuǎn)180°,然后再向下平移2個(gè)單位,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。
A. (﹣4,﹣2﹣) B. (﹣4,﹣2+) C. (﹣2,﹣2+) D. (﹣2,﹣2﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .
⑴.求證:⊿是等腰三角形;
⑵.當(dāng) 時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】省射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加全國(guó)比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缬冶?/span>(單位:環(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根據(jù)表格中的數(shù)據(jù),計(jì)算出甲的平均成績(jī)是________環(huán),乙的平均成績(jī)是________環(huán);
(2)分別計(jì)算甲、乙六次測(cè)試成績(jī)的方差;
(3)根據(jù)(1)(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加全國(guó)比賽更合適,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在彈性限度內(nèi),彈簧掛上物體后會(huì)伸長(zhǎng),測(cè)得一彈簧的長(zhǎng)度y(cm)與所掛物體的質(zhì)量x(kg)之間的關(guān)系如下表,下列說(shuō)法不正確的是( )
x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
y/cm | 20 | 20.5 | 21 | 21.5 | 22 | 22.5 |
A. x與y都是變量,且x是自變量,y是x的函數(shù)
B. 彈簧不掛重物時(shí)的長(zhǎng)度為0 cm
C. 物體質(zhì)量每增加1 kg,彈簧長(zhǎng)度y增加0.5 cm
D. 所掛物體質(zhì)量為7 kg時(shí),彈簧長(zhǎng)度為23.5 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,CD是AB邊上的高線,且有2CD=3AB,又E,F(xiàn)為CD的三等分點(diǎn),則∠ACB與∠AEB之和為( )
A. 45° B. 90° C. 75° D. 135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,益陽(yáng)市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張?jiān)谛〉郎蠝y(cè)得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5°.請(qǐng)幫助小張求出小橋PD的長(zhǎng)并確定小橋在小道上的位置.(以A,B為參照點(diǎn),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.已知CD=2,則AB的長(zhǎng)度等于____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com