精英家教網 > 初中數學 > 題目詳情

【題目】某市為了增強學生體質,全面實施“學生飲用奶”營養(yǎng)工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數統(tǒng)計圖:
(1)本次被調查的學生有名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學生人數在扇形統(tǒng)計圖中所占圓心角的度數;
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

【答案】
(1)200
(2)解:統(tǒng)計圖如下:

=90°,

答:喜好“菠蘿味”牛奶的學生人數在扇形統(tǒng)計圖2中所占圓心角的度數為90°


(3)解:1200×( )=144(盒),

答:草莓味要比原味多送144盒


【解析】解:(1)10÷5%=200(名) 答:本次被調查的學生有200名,
故答案為:200;(2)200﹣38﹣62﹣50﹣10=40(名),
條形統(tǒng)計圖如下:

(1)喜好“核桃味”牛奶的學生人數除以它所占的百分比即可得本次被調查的學生人數;(2)用本次被調查的學生的總人數減去喜好原味、草莓味、菠蘿味、核桃味的人數得出喜好香橙味的人數,補全條形統(tǒng)計圖即可,用喜好“菠蘿味”牛奶的學生人數除以總人數再乘以360°,即可得喜好“菠蘿味”牛奶的學生人數在扇形統(tǒng)計圖2中所占圓心角的度數;(3)用喜好草莓味的人數占的百分比減去喜好原味的人數占的百分比,再乘以該校的總人數即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=﹣ x2+ x+4經過A、B兩點.

(1)寫出點A、點B的坐標;
(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數關系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,拋物線上是否存在一點P,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)已知圖1將線段AB向右平移1個單位長度,2是將線段AB折一下再向右平移1個單位長度,請在圖3中畫出一條有兩個折點的折線向右平移1個單位長度的圖形;

(2)若長方形的長為a,寬為b,請分別寫出三個圖形中除去陰影部分后剩下部分的面積;

(3)如圖4,在寬為10 m,長為40 m的長方形菜地上有一條彎曲的小路,小路寬度為1 m,求這塊菜地的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題探究:
如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.

(1)證明:AD=BE;
(2)求∠AEB的度數.
(3)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.(Ⅰ)請求出∠AEB的度數;(Ⅱ)判斷線段CM、AE、BE之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,FO⊥AB,垂足為點O,連接AF并延長交⊙O于點D,連接OD交BC于點E,∠B=30°,FO=2
(1)求AC的長度;
(2)求圖中陰影部分的面積.(計算結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三角形紙牌中,AB=8cm,BC=6cm,AC=5cm,沿著過△ABC的頂點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,則△AED周長為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用計算器計算:

(1)π-(精確到0.01);

(2) (精確到0.001);

(3)4(精確到0.1);

(4)+()(精確到0.01).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ +bx+c圖象經過A(﹣1,0),B(4,0)兩點.

(1)求拋物線的解析式;
(2)若C(m,m﹣1)是拋物線上位于第一象限內的點,D是線段AB上的一個動點(不與A、B重合),過點D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②試探究:在點D運動過程中,DE、DF、CF的長度之和是否發(fā)生變化?若不變,求出它的值,若變化,試說明變化情況.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2km到達A村,繼續(xù)向南騎行3km到達B村,然后向北騎行9kmC村,最后回到郵局.

(1)以郵局為原點,以向北方向為正方向,用1cm表示1km,畫出數軸,并在該數軸上表示出A、B、C三個村莊的位置;

(2)C村離A村有多遠?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

同步練習冊答案