【題目】某品牌童裝網(wǎng)店平均每天可售出20件,每件盈利40元.為了迎接“雙十一”,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查,如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.解決下列問(wèn)題
(1)若設(shè)每件童裝降價(jià)元,那么平均每天可以多售出 件童裝.
(2)為了使百姓得到更多實(shí)惠,要想平均每天銷(xiāo)售這種童裝盈利1200元,則每件童裝應(yīng)降價(jià)多少元?
【答案】(1);(2)每件童裝應(yīng)降價(jià)20元.
【解析】
(1)根據(jù)每件童裝降價(jià)1元,平均每天就可多售出2件,得出每件童裝降價(jià)x元,每天可多售出2x件;
(2)設(shè)每件應(yīng)降價(jià)x元,每天可以多銷(xiāo)售的數(shù)量為2x件,每件的利潤(rùn)為(40﹣x),由總利潤(rùn)=每件的利潤(rùn)×數(shù)量建立方程求出其解即可.
(1)∵每件童裝降價(jià)1元,平均每天就可多售出2件,∴每件童裝降價(jià)x元,每天可以多售出2x件;
(2)設(shè)每件應(yīng)降價(jià)x元,由題意,得:
(40﹣x)(20+2x)=1200
解得:x1=10,x2=20.
∵為了使百姓得到實(shí)惠,∴x1=10不符合實(shí)際,舍去.
答:每件童裝應(yīng)降價(jià)20元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA與x軸重合,B的坐標(biāo)為(﹣1,2),將矩形OABC繞平面內(nèi)一點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,使A、C兩點(diǎn)恰好落在反比例函數(shù) 的圖象上,則旋轉(zhuǎn)中心P點(diǎn)的坐標(biāo)是( 。
A. (,﹣) B. (,﹣) C. (,﹣) D. (,﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
問(wèn)題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=.
把x=代入已知方程,得+-1=0.
化簡(jiǎn),得y2+2y-4=0.
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱(chēng)為“換根法”.
請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為_________;
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,并且滿(mǎn)足.一動(dòng)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng);動(dòng)點(diǎn)從點(diǎn)出發(fā)在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)分別從點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒)
(1)求兩點(diǎn)的坐標(biāo);
(2)當(dāng)為何值時(shí),四邊形是平行四邊形?并求出此時(shí)兩點(diǎn)的坐標(biāo).
(3)當(dāng)為何值時(shí),是以為腰的等腰三角形?并求出此時(shí)兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)為的中點(diǎn),,的延長(zhǎng)線與交于點(diǎn),且.
(1)求證與相切;
(2)若,求弦的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻EF最長(zhǎng)可利用28米),圍成一個(gè)矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻)用60米長(zhǎng)的墻的材料,當(dāng)矩形的長(zhǎng)BC為多少米時(shí),矩形花園的面積為300平方米;能否圍成480平方米的矩形花園?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a·c≠0,a≠c,下列四個(gè)結(jié)論:① 如果M有兩個(gè)相等的實(shí)數(shù)根,那么N也有兩個(gè)相等實(shí)數(shù)根;② 如果M與N有實(shí)數(shù)根,則M有一個(gè)根與N的一個(gè)根互為倒數(shù);③ 如果M與N有實(shí)數(shù)根,且有一根相同,那么這個(gè)根必是1;④ 如果M的兩根符號(hào)相同,那么N的兩根符號(hào)也相同;其中正確的是( )
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com